New treatments for Autosomal Dominant Polycystic Kidney Disease

Matthew Lanktree MD PhD FRCPC
Nephrologist, Clinician Scientist in Nephrology Genetics
Assistant Professor, McMaster Kidney Genetics Clinic
St. Joseph Healthcare Hamilton, McMaster University

PKD Foundation of Canada, Hamilton Chapter Meeting
March 28, 2019
Faculty/Presenter Disclosure

• Faculty: Matthew Lanktree MD, PhD, FRCPC

• Relationships with financial sponsors:
 • Grants/Research Support: American Society of Nephrology, Canadian Society of Nephrology, Canadian Institutes of Health Research, and Canadian Kidney Foundation
 • Speakers Honoraria: Otsuka
 • Consulting Fees: Otsuka
 • Patents: None
 • Other: None
Objectives

- Summary of ADPKD
- Precision medicine approach to ADPKD
- Conservative treatments for ADPKD

Strategies currently under study:

- Vaptans (tolvaptan, lixivaptan)
- mTOR inhibitors (everolimus, sirolimus)
- Somatostatin (lantreotide, pasireotide, octreotide)
- Tyrosine kinase inhibitors (bosutinib, tesevatinib)
- Glucose metabolism (metformin, salsalate)
- Glucosylceramide inhibitor (venglustat)
- Bardoxolone
- Cyst sclerotherapy
ADPKD is bad luck

- ~1 in 1000
- 70% have kidney failure by age 70
Natural History of ADPKD

GFR: glomerular filtration rate.
Renal and Extrarenal Manifestations of ADPKD

<table>
<thead>
<tr>
<th>Manifestation</th>
<th>Incidence in adults with ADPKD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematuria</td>
<td>42%</td>
</tr>
<tr>
<td>Urine concentration defects</td>
<td>100%</td>
</tr>
<tr>
<td>Proteinuria</td>
<td>18%</td>
</tr>
<tr>
<td>Microalbuminuria</td>
<td>19-40%</td>
</tr>
<tr>
<td>Hepatic cysts</td>
<td>85-94%</td>
</tr>
<tr>
<td>Intracranial aneurysms</td>
<td>5-10%</td>
</tr>
<tr>
<td>Mitral valve prolapse</td>
<td>26%</td>
</tr>
<tr>
<td>Hypertension</td>
<td>~100%</td>
</tr>
<tr>
<td>Renal function decline</td>
<td>~100%*</td>
</tr>
<tr>
<td>Hypertension before renal function decline</td>
<td>60-75%</td>
</tr>
</tbody>
</table>

*~70% of patients with ADPKD progress to ESRD at a median age of 58 years

Heritability of ADPKD

~10% of patients with ADPKD have *de novo* disease due to a spontaneous mutation
Variability in ADPKD severity

Cornec-LeGall et al., JASN 2016
Precision medicine?

- Classical definition of disease, family history
- Advanced genetic, imaging and biomarker data
- Patient values and preferences
- Stratify risk, maximize therapeutic potential while mitigating therapeutic burden
Conservative strategies

- Have plenty of vegetables and fruits
- Eat protein foods
- Make water your drink of choice
- Choose whole grain foods

- NO SMOKING

- Healthy lifestyle icons
WATCHING YOUR STEP – THE DIFFERENT STAGES OF CLINICAL DEVELOPMENT AND WHAT THEY EXAMINE

PHASE I
Checking for safety
Sample: 10-20 healthy volunteers
Unexpected side effects may occur

PHASE II
Checking for efficacy
Sample: about 200 patients
Most research projects fail in Phase II due to product not being as effective as anticipated

PHASE III
Confirm findings in large patient population
Sample: more than 1,000 people
Likelihood to detect rare side effects increases with number of people involved

PHASE IV
Testing long-term safety in diverse patient population
Sample: “real life patients” – testing being carried out outside of clinical environment (post-marketing studies)
Previously untested groups may show adverse reactions

Source: AGCS
Tolvaptan Mechanism of Action

- Vasopressin promotes cyst growth in the kidneys in patients with ADPKD

- Tolvaptan blocks these effects through inhibition of the vasopressin V2 receptor
Tolvaptan: 1-year change in kidney function

Tolvaptan slowed the rate of kidney function decline by 35% over 1 year compared to placebo.

Change in eGFR mL/min/1.73m²/yr

Tolvaptan

Placebo

Difference: 1.271 mL/min/1.73m²/yr (35%)
p-value; <0.0001

Adjusted by the duration of the trial for each patient
ELiSA trial: Lixivaptan

- Same mechanism of action as tolvaptan
- Avoid liver toxicity, less blood work?
- Currently in phase II, end Sept 2019
mTOR inhibitors

- Everolimus (Affinitor), sirolimus (Rapamune)
- Immunosuppressant post kidney transplant
- Cancer treatment
- Tuberous sclerosis complex
- Cardiac stents
- Worked well in pre-clinical studies
- 3 negative trials in ADPKD
- Dose limited by side effects?
Somatostatin

• Inhibitory hormone secreted by gut
 • Decrease growth hormone, prolactin, insulin and glucagon
 • Decrease thyroid stimulating hormone
 • Decrease cAMP
 • Slows movement of food through intestines

• Analogs: octreotide, lanreotide, pasireotide

• Promising in pre-clinical animal studies and small Phase II clinical trials
Can Lanreotide slow the progression of autosomal dominant polycystic kidney disease? The DIPAK1 trial

Randomization
- Open label RCT
- 4 Outpatient clinics
- n = 309
- eGFR 30-60 ml/min
- ADPKD
- Age 48.4 yrs
- Women 53.4%

Primary Outcome
- eGFR Decline
- -3.46 ml/min/yr (-3.9, -3.0)

Secondary Outcome
- Kidney Volume Growth
- 5.5% Per yr
- Quality of life
- 0.07 Composite Score

Randomized
- Standard care
 - n = 154
 - Age 50 yrs
 - Women 57.9%
 - ADPKD
- Lanreotide + Standard care
 - n = 155
 - Age 50 yrs
 - Women 59.3%
 - ADPKD

- NS
- p = 0.02
- NS

Conclusion: Lanreotide was not effective in slowing the decline in kidney function in patients with later-stage ADPKD over 2.5 years of follow-up

@divyaa24
Tyrosine kinase inhibitor in Phase II

Bosutinib (BOS) vs. Placebo for ADPKD
Phase 2, Multisite Study

<table>
<thead>
<tr>
<th>Outcomes (treatment for 2-24 wks)</th>
<th>Placebo N = 56</th>
<th>BOS 200 mg/d N = 58</th>
<th>BOS 200/400 mg/d N = 34</th>
<th>BOS 400 mg/d N = 21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annualized rate of kidney enlargement</td>
<td>4.74 %</td>
<td>1.63 %</td>
<td>-0.2 %</td>
<td>1.29 %</td>
</tr>
<tr>
<td>Annualized eGFR decline rate (ml/min/1.73 m2)</td>
<td>-2.54 %</td>
<td>-3.09 %</td>
<td>-4.76 %</td>
<td>-7.43 %</td>
</tr>
</tbody>
</table>

CONCLUSION: Compared with placebo, bosutinib at 200 mg/d reduced kidney growth in patients with ADPKD ($p = 0.01$), thought the eGFR decline rate was similar ($p = 0.71$).

August 24, 2017
The Warburg Effect
Inhibition of aerobic glycolysis

• Metformin
 • Baltimore: ongoing; placebo; 100 patients; end December 2020
 • Colorado: ongoing; placebo; 50 patients; end March 2020
 • Italy: enrolling; vs. tolvaptan; 150 patients; end Jan 2022

• Pioglitazone
 • Indiana: ongoing; 18 patients; end Oct 2020

• Salsalate (NOT salicylate, ASA, aspirin)

• Intermittent fasting
 • Colorado: recruiting; 40 obese patients; end Sept 2020
Glucosylceramide inhibitor (Venglustat)

- Used to treat Fabry & Goucher disease

- Multi-national Phase II trial 560 patients now enrolling
Bardoxolone

- Activator of Nrf2 pathway (increases production of anti-oxidants)
- Nrf2 is suppressed in chronic inflammation
- Studied in diabetic nephropathy, Alport syndrome, nephrotic syndrome, IgA nephropathy
- Largest trial stopped early due to concern about cardiac toxicity
- One trial in ADPKD ongoing, expected end August 2019
Cyst sclerotherapy

• Interventional radiology procedure
• >5 cm cysts
• Sodium tetradecyl sulphate (STS)
Statins

• Lower LDL cholesterol, reduce inflammation
• One trial suggested benefit in pediatric population
• Already at elevated cardiovascular risk
• One trial recruiting in Colorado, 250 patients, expected end date December 2021
Water prescription

• Inhibit vasopressin secretion
 • as opposed to blocking vasopressin action like tolvaptan

• When water can be bad?

• PREVENT-ADPKD: multi-national Australian led
 • 3 years, recruiting now, 180 patients; usual vs. prescribed water intake

• DRINK trial: UK
 • 8 weeks, done, 42 patients, feasibility study
Conclusions

• Precision medicine
• Conservative measures
• Tolvaptan?
• More to come...

Vaptans (tolvaptan, lixivaptan)
mTOR inhibitors (everolimus, sirolimus)
Somatostatin (lantreotide, pasireotide, octreotide)
Tyrosine kinase inhibitors (bosutinib, tesevatinib)
Glucose metabolism (metformin, salsalate)
Glucosylceramide inhibitor (venglustat)
Bardoxolone
Cyst sclerotherapy
Statins
Water prescription