WELCOME!
Electricity Conservation in your Faith Building
“Lunch n Learn” Webinar
November 20, 2019 11:00 am to 12:00 pm
Our Presenter: Dr. Don Dewees

AGENDA
• 11:00 -11:05 Welcome and Land Acknowledgement - Lucy Cummings, FCG
• 11:05 - 11:40 Runnymede United Case Study - Electricity Conservation & Paybacks - Don Dewees, Professor Emeritus, U of T, BSEE, LLB, PHD Economics
• 11:40 - 12:00 Question & Answer - Donna Lang, FCG

Thanks to Ontario Trillium Foundation for supporting this webinar!
Runnymede United
Electricity Conservation Case Study

Donald N. Dewees
Professor Emeritus of Economics and Law
University of Toronto
Chair, Finance and Property Committees
Runnymede United Church
Greening Sacred Spaces Webinar
20 November 2019
Introduction

• I am an engineer and economist.
• I chair Property Committee, do repairs, projects
 • Talking plain English today
• This talk is about \textbf{electricity} conservation
 • Not heating; heating was 8 May. No A/C.
• Two and one-half topics today
 • How to evaluate projects, choose which to do.
 • Examples of results from actual projects.
 • Rules of thumb for easy guidance.
Evaluating, Choosing Conservation Projects

• We want sustainability.
• We have limited funds, can’t do everything.
• How do you choose among projects?

Choose projects that give the biggest bang for the buck, considering:
 • How much does the project cost?
 • How much does it save in electricity costs?
 • How much does it reduce GHG?
Choosing Conservation Projects (2)

• Shortcut decision variable - **payback period**

• How many years of savings to recover the initial cost? 3 ways:
 • Cash flow analysis – look at $ the building owner spends and saves.
 • **Social** cash flow analysis – look at **total project cost** (including subsidies, grants) and what the owner saves.
 • Social cash flow + **ENV** (environmental) analysis:
 • include GHG reduction in annual saving, valued at $50/tonne of CO2.

• Result: payback period (years) for each measure
 • = initial (capital) cost/annual net savings = years to pay back

• Less than 10 years is a good investment; more is not.
Choosing Conservation Projects (3)

• Why $50/tonne for GHG?
 • To compare projects that reduce GHG, you need a value for GHG reduction.
 • Governments are adopting (and fighting over) carbon pricing:
 • Carbon tax
 • Cap and trade
 • Analysis based on a carbon price will help you get maximum carbon reduction per $ spent.
 • Suppose you have $1000 to spend.
 • Projects costing $200/tonne – you reduce 5 tonnes.
 • Projects costing $50/tonne – you reduce 20 tonnes.
 • $50 is the upper limit of recent actual policies for GHG control.
 • If you prefer $100/tonne, re-do my analysis using $100. etc.
Assessing Electricity Conservation: Example

• To assess projects, need to estimate savings.
• For lighting, use bulb and fixture specifications and ‘on-time’.
• **Example**: Replace 150W incandescent bulb with 17W LED bulb
 • (The LED produces more light than the 150W.)
 • Savings = 150-17 = 133 Watts.
 • On-time = 15 hours/week x 50 weeks = 750 hours/year.
 • Annual savings = 133W x 750hrs = 99,750 Watt-hours/year.
 • Divide by 1000 to get kWh: 99.75 kWh/year – call it 100 kWh.
 • Cash flow savings depend on electricity price
 • **Assume** electricity price = $0.10/kWh
 • Cash flow savings = $10/year per bulb. (100kWh x $0.10)
Assessing Electricity Conservation: Example (2)

• Cost of LED bulb = $35.
 • These large LED are much more expensive than 60W, 100W equivalent.

• Cash flow payback
 • Initial cost/annual savings
 • $35/$10 = 3.5 years
 • Payback period much less than 10 years. Passes the test easily.
 • **Great project**, recover your money quickly, keep saving for decades.
 • If we had a grant, our cost would be lower, cash flow payback period shorter.
 • But someone pays the grant cost, so **SOCIAL** cost payback period is 3.5 years.

• Better (shorter) payback with longer on-time (more hours), or higher electricity price.
Estimating GHG Reduction: Example

• How much less GHG when we conserve electricity?

• Depends on Ontario generation mix.
 • 100% coal generation: save about 1 tonne CO2 per 1000 kWh saved.
 • 100% hydroelectric generation: save NO CO2 per 1000 kWh saved.
 • 2019 in Ontario, no coal; gas generates <10% of electricity, sets the price maybe 30% of the time. Assume 30% gas.
 • Saving 1000 kWh saves 0.16 tonnes CO2

• Our 17W (150W equivalent) LED bulb saves 100 kWh/year = 0.016 tonnes CO2.
Assessing Social + ENV Payback Period

• Our LED bulb saved 0.016 tonnes of GHG/year
• 0.016 t/yr x $50/t = $0.80/year value of GHG saving at $50/tonne.
• Social + ENV payback period = Cost/(cash flow + ENV)
 = $35/($10+$0.80) = 3.24 years.
 • GHG value <8% of the cash flow savings.
 • Counting GHG reduces the payback time, but less than 8%.

• Great project, but:
 • Ontario has fairly clean electricity, so electricity conservation does not reduce GHG much.
 • Including GHG reduction does not improve payback period much.
RUC Case Study Projects: Background

• Analyze projects from RUC experience.
 • RUC: 28,000 square feet, built 1926 and 1951, stone and brick.
 • Sanctuary seats 750: incandescent bulbs switched to LED recently.
 • Mostly fluorescent lights elsewhere: 4-foot 2-tube ceiling fixtures.
 • Some halogen floods, outdoor floods, specialty lights.

• No air conditioning conservation projects analyzed here.
 • We just added A/C to some rooms: 2016, 2019.
 • Increased our summer electricity consumption.
Runnymede Sanctuary Lights (and candles)
Project #1, Ceiling Fluorescent Light Upgrade

• We had 110+ 4-foot 2-tube fluorescent fixtures. 2012 upgrade.
 • Usage varies from 5,000 hours/year (100 hours/week) to < 1000 hrs/yr
 • Fat bulbs (‘T12’, 1 ½ inch diameter) with magnetic ballasts: >82 Watts/fixture
 • Upgrade to thin fluorescent bulbs (‘T8’, 1-inch) + electronic ballasts: 42 W/fix
 • Cash flow payback period: 4 years with grant, 5.4 years without grant, 4.6 years with GHG.
 • Great investment, but very hard to verify electricity use before or after!
• Today you would upgrade to thin (T8) LED bulbs, no ballast, 28 W/fixture
 • Save 24 Watts over T8 fluorescent.
 • Payback period = 10 years with no grant, no GHG if they are on more than 3,500 hours/year.
 • Save 54 Watts over T12 fluorescent.
 • Payback period < 5 years, no grant. Break even (10 years) at less than 1,700 hours/year.
2-tube fluorescent fixtures converted to LED

Installing T8 LED bulbs
LED bulbs installed

LED in use
Ceiling Fluorescent Light Upgrade (2)

- **Rules of thumb for 4-foot fluorescent upgrade:**
 - If you have **fat T12 bulbs with magnetic ballast**, replace with no-ballast LED bulbs in any fixture used more than 30 hours/wk = 1,500 hours/year.
 - Payback period 10 years or less. Good investment.
 - 40 hours/week = 2,000 hours/year. Great investment.
 - More hours/week gives faster payback, better investment.
 - If you have **thin T8 bulbs with electronic ballast**, the savings from converting to T8 LED are small.
 - Only worthwhile (payback less than 10 years) if lights are on more than 3,500 hours/year.
 - Do it in intensively-used areas.
 - Poor investment (17-year payback) in areas used only 40 hours/week (2,000 hrs/yr).
 - Wait for ballasts to start failing.
Project #2: Washroom Motion Sensors

• Problem: lights left on after users leave. Sometimes overnight.

• Need to estimate weekly **excess on-time**.
 • No data, just guessing.
 • Assumed 10 hours/week/washroom (one overnight)

• Washroom wattage: lights + fan = 130 Watts.

• Savings = 10 hrs x 52 weeks x 130 W = 67.6 kWh/year, 0.01 t GHG.
 • Cash flow savings = $11.14 (price > 10 cents/kWh)
 • Sensor cost $35 (free volunteer installation)
 • Cash flow payback = 3.14 yrs. With GHG = 3.0 years. **Great investment.**

• Attractive project, but very small savings.

• Professional electrician or poor sensor choice wipes out savings.
Washroom Motions Sensors: Poor and Good

User can move slider: Off, Auto, On. Some users move from Auto to Off or On, defeating purpose.

Adjustments are behind the cover plate, not seen by users. No tampering. 15-minute on-time, user can tap off and switch reverts to automatic.
Project #3: Incandescent Bulb to LED Upgrade

• LED bulbs use only 20% as much electricity as incandescent.

• Popular bulbs (60, 100W equivalent) cost little more than incandescent, last > 10 times as long.
 • Payback period is < 1 year for LED replacement used 1,000 hours/year.
 • Rule of thumb: replace all these bulbs with LED except rarely used.

• Larger bulbs (150W equivalent and up) cost much more.
 • In some areas lighting quality is very important.
 • Dimmer compatibility is a challenge.
 • Usage requires careful estimation.
150 W Incandescent, LED Replacements

- Left, 27 Watt, 3500 lumen
- Sansi LED

- Middle, 150 Watt, 2100 lumen incandescent.

- Right, 17 Watt, 2500 lumen
- Sansi LED
Incandescent Bulb to LED Upgrade (2)

- We replaced 62 sanctuary 150-250 W incandescent & halogen bulbs with LED:
 - Cost = $3,144 (+ 60 hours volunteer labour, scaffold work)
 - Hours/year = 750 (worship, choir, rehearsals, cleaning, rental, etc.)
 - Savings = 7,755 kWh/yr
 - $1,200/yr cash flow saving. No grant.
 - Cash flow payback = 3 years. Great investment
 - 1.21 tonnes/yr GHG reduction
 - Social + GHG payback= 2.9 years. Great investment but minor GHG reduction

- Rule of Thumb:
 - Replace incandescent bulbs used > 10 hours/week with expensive LED when suitable quality LED light is available.
Project #4: Outdoor Floodlight LED Upgrade

- Outdoor floods could be halogen, metal halide, high pressure sodium.
- MH and HPS are pretty efficient.
 - Not large energy savings available unless reduce light level.
 - But less light may be enough.
- Lights at night on 4,000 hours/year or more.
- We replaced five MH and HPS fixtures using 180-210 Watts each with LED fixtures using 50 Watts.
 - Half the light (5,000 lumens replacing 10,000 lumens), 1/3 to ¼ the Watts
 - Aimed the lights more horizontal to get better ground-level lighting.
 - Reduced light spillage to the sky. Less waste.
Outdoor Floods, Old and New.

Old floodlight, 150 Watt HPS, ballast.

New floodlight, 50 Watt LED.
Outdoor Floodlight LED Upgrade (2)

• Project cost = $1,300 with professional electrician.
• Saving 756 Watts x 4,000 hours = >3,000 kWh/year
• Mostly night-time use, so relatively low electricity price.
 • Cash flow savings = $292/year, payback period 4.4 years.
 • Great project.
 • GHG reduction = 0.47 tonnes/year. Not much gas at night.
 • Cash flow + GHG payback period = 4.1 years.
 • Even greater project.
• Rule of Thumb: Outdoor floodlight conversion to LED achieves great savings if you can reduce lighting levels. Do it.
What about Non-Lighting Conservation?

• Fridges and freezers are significant energy-users, but hard to measure consumption, likely savings from upgrading.
 • User groups (employees, tenants, etc) hate to give up their own fridge.
 • We got rid of some, replacements appeared . . .
• Air conditioning can use lots of electricity. Tips to conserve:
 • Set temperature as high as users will tolerate.
 • Only cool heavily used rooms if there is a choice.
 • With heavy masonry construction, may save money to run A/C at night (low price), turn off during peak price hours.
Conclusions

• Calculating payback periods helps decide what projects to do.
 • Maximize conservation from limited project funds.
• Usage matters: hours/week the lights are on.
• T12 fluorescents, more than 5 hours/week, go LED.
• Incandescent or halogen bulbs, more than 5 hours/week, go LED.
• All-night outdoor floods – if less light OK, go LED.
• WC motion sensors – yes if there is significant electricity: >100W and significant on-time.
• Reducing electricity use in Ontario does not reduce GHG much.
Appendices

• Project results summary table
• Sanctuary photo showing chandeliers
Summary of Electricity Conservation Project Data and Results

<table>
<thead>
<tr>
<th>Project</th>
<th>Cost</th>
<th>Energy Saved</th>
<th>GHG Saved</th>
<th>Payback Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>($)</td>
<td>(kWh/yr)</td>
<td>(tonnes/year)</td>
<td>(years)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cash Flow</td>
<td>Social + Cash Flow</td>
</tr>
<tr>
<td>#1 Lighting, T12→T8</td>
<td>7,900**</td>
<td>10,340</td>
<td>4.66</td>
<td>4.0</td>
</tr>
<tr>
<td>T8→LED (utility)</td>
<td>2,380**</td>
<td>11,486</td>
<td>1.78</td>
<td>0.04**</td>
</tr>
<tr>
<td>#1 T8→LED (self est)</td>
<td>2,380**</td>
<td>2,908</td>
<td>0.45</td>
<td>0.14**</td>
</tr>
<tr>
<td>#2 WC motion sensor</td>
<td>35*</td>
<td>67.6</td>
<td>0.01</td>
<td>3.1</td>
</tr>
<tr>
<td>WC motion sensor</td>
<td>110†</td>
<td>67.6</td>
<td>0.01</td>
<td>9.9</td>
</tr>
<tr>
<td>#3 Incandescent→LED</td>
<td>3,144</td>
<td>7,775</td>
<td>1.21</td>
<td>2.65</td>
</tr>
<tr>
<td>#4 Outdoor flood→LED</td>
<td>1,300</td>
<td>3,024</td>
<td>0.47</td>
<td>4.4</td>
</tr>
</tbody>
</table>

*Not including value of substantial volunteer labour.

** A grant offset a significant part of this cost and thus the cash flow payback.

† Professional labour in place of volunteers

Decision rule: Priority projects have payback period less than 10 years.