Mentoring and student success

Aloysius G. Helminck (Loek)

Department of Mathematics
North Carolina State University

November 15, 2014
Mentoring and Community Building are important tools to help underrepresented students succeed in graduate school.

- The alliance of "doctoral studies the mathematical sciences" has built an extensive constantly growing community and excels in this.
- Has helped to place students in the right graduate programs where they could exceed.
- Problem: Mentoring alone is not enough to help underprepared students succeed. They often get burned out from taking (catchup) courses too long and leave with a masters degree.
Mentoring and Community Building are important tools to help underrepresented students succeed in graduate school.

The alliance of "doctoral studies the mathematical sciences" has build an extensive constantly growing community and excels in this.

Has helped to place students in the right graduate programs where they could exceed.

Problem: Mentoring alone is not enough to help underprepared students succeed. They often get burned out from taking (catchup) courses too long and leave with a masters degree.
Mentoring and Community Building are important tools to help underrepresented students succeed in graduate school.

The alliance of "doctoral studies the mathematical sciences" has built an extensive constantly growing community and excels in this.

Has helped to place students in the right graduate programs where they could exceed.

Problem: Mentoring alone is not enough to help underprepared students succeed. They often get burned out from taking (catchup) courses too long and leave with a masters degree.
Mentoring and Community Building are important tools to help underrepresented students succeed in graduate school.

The alliance of "doctoral studies the mathematical sciences" has build an extensive constantly growing community and excels in this.

Has helped to place students in the right graduate programs where they could exceed.

Problem: Mentoring alone is not enough to help underprepared students succeed. They often get burned out from taking (catchup) courses too long and leave with a masters degree.
Goal and Observations

Goal: Promote Mathematics as a career choice for American students, especially underrepresented groups, and help them succeed.

Observations:
- American students don’t specialize early. Only the most dedicated choose math early enough to be noticed compared to foreign students.
- Studies have shown that especially women and minorities decide late in their undergraduate studies to become math majors. Consequently, they often lag behind.
- Plenty of other talented American students are out there. We need a way to bring them to our programs and get them up to speed.
Goal and Observations

Goal: Promote Mathematics as a career choice for American students, especially underrepresented groups, and help them succeed.

Observations:
- American students don’t specialize early. Only the most dedicated choose math early enough to be noticed compared to foreign students.
- Studies have shown that especially women and minorities decide late in their undergraduate studies to become math majors. Consequently they often lag behind.
- Plenty of other talented American Students are out there. We need a way to bring them to our programs and get them up to speed.
Goal and Observations

- **Goal:** Promote Mathematics as a career choice for American students, especially underrepresented groups, and help them succeed.

- **Observations:**
 - American students don’t specialize early. Only the most dedicated choose math early enough to be noticed compared to foreign students.
 - Studies have shown that especially women and minorities decide late in their undergraduate studies to become math majors. Consequently they often lag behind.
 - Plenty of other talented American Students are out there. We need a way to bring them to our programs and get them up to speed.
Goal and Observations

Goal: Promote Mathematics as a career choice for American students, especially underrepresented groups, and help them succeed.

Observations:

- American students don’t specialize early. Only the most dedicated choose math early enough to be noticed compared to foreign students.
- Studies have shown that especially women and minorities decide late in their undergraduate studies to become math majors. Consequently they often lag behind.
- Plenty of other talented American Students are out there. We need a way to bring them to our programs and get them up to speed.
Goal and Observations

Goal: Promote Mathematics as a career choice for American students, especially underrepresented groups, and help them succeed.

Observations:
- American students don’t specialize early. Only the most dedicated choose math early enough to be noticed compared to foreign students.
- Studies have shown that especially women and minorities decide late in their undergraduate studies to become math majors. Consequently they often lag behind.
- Plenty of other talented American Students are out there. We need a way to bring them to our programs and get them up to speed.
Main Ideas

- Motivate students with potential.
- Get and maintain student excitement about mathematics.
- Build a community of mathematicians.
- Retention.
- Modernize Curriculum!
- Attract and retain good US students (perhaps initially on paper not the "best" students, but students with the same potential as those that are better prepared).
Main Ideas

- Motivate students with potential.
- Get and maintain student excitement about mathematics.
- Build a community of mathematicians.
- Retention.
- Modernize Curriculum!
- Attract and retain good US students (perhaps initially on paper not the “best” students, but students with the same potential as those that are better prepared).
Main Ideas

- Motivate students with potential.
- Get and maintain student excitement about mathematics.
- **Build a community of mathematicians.**
- Retention.
- Modernize Curriculum!
- Attract and retain good US students (perhaps initially on paper not the “best” students, but students with the same potential as those that are better prepared).
Motivate students with potential.
Get and maintain student excitement about mathematics.
Build a community of mathematicians.
Retention.
Modernize Curriculum!
Attract and retain good US students (perhaps initially on paper not the “best” students, but students with the same potential as those that are better prepared).
Main Ideas

- Motivate students with potential.
- Get and maintain student excitement about mathematics.
- Build a community of mathematicians.
- Retention.

- Modernize Curriculum!
 - Attract and retain good US students (perhaps initially on paper not the “best” students, but students with the same potential as those that are better prepared).
Main Ideas

- Motivate students with potential.
- Get and maintain student excitement about mathematics.
- Build a community of mathematicians.
- Retention.
- Modernize Curriculum!

- Attract and retain good US students (perhaps initially on paper not the “best” students, but students with the same potential as those that are better prepared).
Have students do math research in small groups in the summer early on in graduate school.

... in the right supportive and exciting circumstances.
Have students do math research in small groups in the summer early on in graduate school.

... in the right supportive and exciting circumstances.
Summer institute "I'M at State" consists of 4 programs:

- **REU**: Modeling and Industrial Applied Mathematics (funded by NSF and NSA)
- **REU+**: Research and enrichment experience for under-represented undergraduate students (funded by NSF and NSA)
- **REG**: Research Experience for Early Graduate Students (funded by NSF)
- Summer Research Experience for Early NCSU Graduate Students (some participate in projects of the REU program).

Academic year programs:
NCSU Programs

Summer institute "I'M at State" consists of 4 programs:

- **REU**: Modeling and Industrial Applied Mathematics (funded by NSF and NSA)
- **REU+**: Research and enrichment experience for under-represented undergraduate students (funded by NSF and NSA)
- **REG**: Research Experience for Early Graduate Students (funded by NSF)
- Summer Research Experience for Early NCSU Graduate Students (some participate in projects of the REU program).

Academic year programs:

Loek Helminck (NCSU)
NCSU Programs

Summer institute "I'M at State" consists of 4 programs:

- **REU**: Modeling and Industrial Applied Mathematics (funded by NSF and NSA)
- **REU+**: Research and enrichment experience for under-represented undergraduate students (funded by NSF and NSA)
- **REG**: Research Experience for Early Graduate Students (funded by NSF)
- Summer Research Experience for Early NCSU Graduate Students (some participate in projects of the REU program).

Academic year programs:

- **REG+**: Post-baccalaureate program for underprepared students. Includes a summer research experience.
NCSU Programs

Summer institute "I'M at State" consists of 4 programs:

- **REU**: Modeling and Industrial Applied Mathematics (funded by NSF and NSA)
- **REU+**: Research and enrichment experience for under-represented undergraduate students (funded by NSF and NSA)
- **REG**: Research Experience for Early Graduate Students (funded by NSF)
- **Summer Research Experience for Early NCSU Graduate Students** (some participate in projects of the REU program).

Academic year programs:

- **REG+**: Post-baccalaureate program for underprepared students. Includes a summer research experience.
- Research Scholars Program provides students with less preparation extra mentoring and reduced TA duties until they pass the qualifying/prelim exams.
NCSU Programs

Summer institute "I'M at State" consists of 4 programs:

- REU: Modeling and Industrial Applied Mathematics (funded by NSF and NSA)
- REU+: Research and enrichment experience for under-represented undergraduate students (funded by NSF and NSA)
- REG: Research Experience for Early Graduate Students (funded by NSF)
- Summer Research Experience for Early NCSU Graduate Students (some participate in projects of the REU program).

Academic year programs:

- REG+: Post-baccalaureate program for underprepared students. Includes a summer research experience.
- Research Scholars Program provides students with less preparation extra mentoring and reduced TA duties until they pass the qualifying/prelim exams.
NCSU Programs

Summer institute "I'M at State" consists of 4 programs:

- **REU**: Modeling and Industrial Applied Mathematics (funded by NSF and NSA)
- **REU+**: Research and enrichment experience for under-represented undergraduate students (funded by NSF and NSA)
- **REG**: Research Experience for Early Graduate Students (funded by NSF)
- **Summer Research Experience for Early NCSU Graduate Students** (some participate in projects of the REU program).

Academic year programs:

- **REG+**: Post-baccalaureate program for underprepared students. Includes a summer research experience.
- Research Scholars Program provides students with less preparation extra mentoring and reduced TA duties until they pass the qualifying/prelim exams.
NCSU Programs

Summer institute "I'M at State" consists of 4 programs:

- **REU**: Modeling and Industrial Applied Mathematics (funded by NSF and NSA)
- **REU+**: Research and enrichment experience for under-represented undergraduate students (funded by NSF and NSA)
- **REG**: Research Experience for Early Graduate Students (funded by NSF)
- Summer Research Experience for Early NCSU Graduate Students (some participate in projects of the REU program).

Academic year programs:

- **REG+**: Post-baccalaureate program for underprepared students. Includes a summer research experience.
- **Research Scholars Program** provides students with less preparation extra mentoring and reduced TA duties until they pass the qualifying/prelim exams.
Post-baccalaureate program (REG+):

- REG+ enables students to catch up, build confidence and become part of a community.
- 100% of REG+ students became PhD students and are making good progress towards their PhD.
- All participants underrepresented students (women and URM) whom would otherwise not have pursued graduate education in math.

Research Scholars Program

- Provides students with less preparation a cohort, extra time (reduced TA duties) and mentoring until they pass the qualifying exams.
- Get at least one early research experience (often two). Applied students get co-mentors from industry or national labs.
Post-baccalaureate program (REG+) :
- REG+ enables students to catch up, build confidence and become part of a community.
- 100% of REG+ students became PhD students and are making good progress towards their PhD.
- All participants underrepresented students (women and URM) whom would otherwise not have pursued graduate education in math.

Research Scholars Program
- Provides students with less preparation a cohort, extra time (reduced TA duties) and mentoring until they pass the qualifying exams.
- Get at least one early research experience (often two). Applied students get co-mentors from industry or national labs.
Post-baccalaureate program (REG+) :

- REG+ enables students to catch up, build confidence and become part of a community.
- 100% of REG+ students became PhD students and are making good progress towards their PhD.
- All participants underrepresented students (women and URM) whom would otherwise not have pursued graduate education in math.

Research Scholars Program

- provides students with less preparation a cohort, extra time (reduced TA duties) and mentoring until they pass the qualifying exams.
- Get at least one early research experience (often two). Applied students get co-mentors from industry or national labs.
Post-baccalaureate program (REG+) :
- REG+ enables students to catch up, build confidence and become part of a community.
- 100% of REG+ students became PhD students and are making good progress towards their PhD.
- All participants underrepresented students (women and URM) whom would otherwise not have pursued graduate education in math.

Research Scholars Program
- provides students with less preparation a cohort, extra time (reduced TA duties) and mentoring until they pass the qualifying exams.
- Get at least one early research experience (often two). Applied students get co-mentors from industry or national labs.
Post-baccalaureate program (REG+) :
- REG+ enables students to catch up, build confidence and become part of a community.
- 100% of REG+ students became PhD students and are making good progress towards their PhD.
- All participants underrepresented students (women and URM) whom would otherwise not have pursued graduate education in math.

Research Scholars Program
- provides students with less preparation a cohort, extra time (reduced TA duties) and mentoring until they pass the qualifying exams.
- Get at least one early research experience (often two). Applied students get co-mentors from industry or national labs.
Data from 2014 Summer program

- Total: 78 students participating in summer research institute (48 students in the combined REU/REU+/REG and 30 NCSU first year grad students)

 - Mentors for REU/REU+/REG: 14 NCSU Faculty, 14 senior graduate students, 2 faculty from HBCU’s, 1 counselor.

 - Mentors for Summer Research Experience for Early NCSU Graduate Students: 21 NCSU Faculty.

 - 12 African American Students from partner HBCU’s and 1 Hispanic, student

 - 50+% women each year

 - 22.5% were planning or in grad school before program, 98% planned grad school after program.
Details and Data

Data from 2014 Summer program

- Total: 78 students participating in summer research institute (48 students in the combined REU/REU+/REG and 30 NCSU first year grad students)
- Mentors for REU/REU+/REG: 14 NCSU Faculty, 14 senior graduate students, 2 faculty from HBCU’s, 1 counselor.
- Mentors for Summer Research Experience for Early NCSU Graduate Students: 21 NCSU Faculty.
- 12 African American Students from partner HBCU’s and 1 Hispanic, student
- 50+% women each year
- 22.5% were planning or in grad school before program, 98% planned grad school after program.
Details and Data

Data from 2014 Summer program

- Total: 78 students participating in summer research institute (48 students in the combined REU/REU+/REG and 30 NCSU first year grad students)
- Mentors for REU/REU+/REG: 14 NCSU Faculty, 14 senior graduate students, 2 faculty from HBCU’s, 1 counselor.
- Mentors for Summer Research Experience for Early NCSU Graduate Students: 21 NCSU Faculty.
- 12 African American Students from partner HBCU’s and 1 Hispanic, student
- 50+% women each year
- 22.5% were planning or in grad school before program, 98% planned grad school after program.
Details and Data

Data from 2014 Summer program

- Total: 78 students participating in summer research institute (48 students in the combined REU/REU+/REG and 30 NCSU first year grad students)
- Mentors for REU/REU+/REG: 14 NCSU Faculty, 14 senior graduate students, 2 faculty from HBCU’s, 1 counselor.
- Mentors for Summer Research Experience for Early NCSU Graduate Students: 21 NCSU Faculty.
- 12 African American Students from partner HBCU’s and 1 Hispanic, student
- 50+% women each year
- 22.5% were planning or in grad school before program, 98% planned grad school after program.
Data from 2014 Summer program

- Total: 78 students participating in summer research institute (48 students in the combined REU/REU+/REG and 30 NCSU first year grad students)
- Mentors for REU/REU+/REG: 14 NCSU Faculty, 14 senior graduate students, 2 faculty from HBCU’s, 1 counselor.
- Mentors for Summer Research Experience for Early NCSU Graduate Students: 21 NCSU Faculty.
- 12 African American Students from partner HBCU’s and 1 Hispanic, student
- 50+% women each year
- 22.5% were planning or in grad school before program, 98% planned grad school after program.
Total: 78 students participating in summer research institute (48 students in the combined REU/REU+/REG and 30 NCSU first year grad students)

Mentors for REU/REU+/REG: 14 NCSU Faculty, 14 senior graduate students, 2 faculty from HBCU’s, 1 counselor.

Mentors for Summer Research Experience for Early NCSU Graduate Students: 21 NCSU Faculty.

12 African American Students from partner HBCU’s and 1 Hispanic, student

50+% women each year

22.5% were planning or in grad school before program, 98% planned grad school after program.
Key features of all programs

- Give the students the experience and excitement of doing real mathematical research.
- Build a community of mathematicians. Both peers and vertical. (live together, friendly accessible faculty/grad students, events, activities)
 - A cohort for peer support throughout their careers.
 - Students not that far above them/ below them to inspire and aspire.
- Supportive environment.
- Grad students learn to be mentors, they improve their own ability as researchers by having to think about helping others. (Like learning calculus by teaching it)
Key features of all programs

- Give the students the experience and excitement of doing real mathematical research.
- Build a community of mathematicians. Both peers and vertical. (live together, friendly accessible faculty/grad students, events, activities)
 - A cohort for peer support throughout their careers.
 - Students not that far above them/ below them to inspire and aspire.
- Supportive environment.
- Grad students learn to be mentors, they improve their own ability as researchers by having to think about helping others. (Like learning calculus by teaching it)
Key features of all programs

- Give the students the experience and excitement of doing real mathematical research.
- Build a community of mathematicians. Both peers and vertical. (live together, friendly accessible faculty/grad students, events, activities)
 - A cohort for peer support throughout their careers.
 - Students not that far above them/ below them to inspire and aspire.
- Supportive environment.
- Grad students learn to be mentors, they improve their own ability as researchers by having to think about helping others. (Like learning calculus by teaching it)
Key features of all programs

- Give the students the experience and excitement of doing real mathematical research.

- Build a community of mathematicians. Both peers and vertical. (live together, friendly accessible faculty/grad students, events, activities)
 - A cohort for peer support throughout their careers.
 - Students not that far above them/ below them to inspire and aspire.

- Supportive environment.

- Grad students learn to be mentors, they improve their own ability as researchers by having to think about helping others. (Like learning calculus by teaching it)
Key features of all programs

- Give the students the experience and excitement of doing real mathematical research.

- Build a community of mathematicians. Both peers and vertical. (live together, friendly accessible faculty/grad students, events, activities)
 - A cohort for peer support throughout their careers.
 - Students not that far above them/ below them to inspire and aspire.

- Supportive environment.
 - Grad students learn to be mentors, they improve their own ability as researchers by having to think about helping others. (Like learning calculus by teaching it)
Key features of all programs

- Give the students the experience and excitement of doing real mathematical research.

- Build a community of mathematicians. Both peers and vertical. (live together, friendly accessible faculty/grad students, events, activities)
 - A cohort for peer support throughout their careers.
 - Students not that far above them/ below them to inspire and aspire.

- Supportive environment.

- Grad students learn to be mentors, they improve their own ability as researchers by having to think about helping others. (Like learning calculus by teaching it)
2014 REU Projects

- Mathematical Phylogenetics and the Space of Trees
- Computational Modeling for OCT Imaging of the Human Eye
- Multiple Beam, Permanent Magnet Focused Klystrons for the Next Generation of High Energy Accelerators
- Physiologically Based Pharmacokinetic Modeling for Acetone: How Much Do We Really Breathe In?
- Generalized Symmetric Spaces and Their Applications
- Counting the Number of Real Roots of Random Polynomials
- Mean-Variance Portfolio Optimization and Black-Litterman Model
- Geometric Flows of Plane Curves
- Parameter Selection and Model Reduction Techniques for Uncertainty Quantification in Large-Scale Models
- Data and Cluster Analytics
- Modeling the Interaction Between Autonomic Neural Regulation and Inflammation Using Pre- and Postoperative Data from Hip and Knee Replacement Surgery
- Computational Modeling of the Thyroid Hormones Hemostasis and its
Examples of REG Projects for NCSU first year grad students

- A Comparison of Nonlinear Filtering Approaches in the Context of an HIV Model
- Inverse problems for cell proliferation models using noisy data
- L-infinity Structures
- The Hopf Algebra of Twisted Baxter Permutations
- Numerical Modeling of a Resonant Tunneling Diode
- Models of Drug Epidemic and Prevention
- Stability of Relative Equilibria of LR Systems
- Symbolic-numeric Solution of Polynomial Systems
- Model of the Female Reproductive System
- Hamel Equations and Hamilton-Pontryagin Principle
- Decomposition of Positive Definite Matrices
- Optimal Pipe Sizes and Water Treatment Plant Expansion: Public Utilities
Specific features for minority students (REU+)

- Accept capable though underprepared underrepresented students.
- 2 week ramp up course before the project begins.
- HBCU mentors participate in ramp up program.
- Totally integrated into regular REU program.
Specific features for minority students (REU+)

- Accept capable though underprepared underrepresented students.
- 2 week ramp up course before the project begins.
- HBCU mentors participate in ramp up program.
- *Totally integrated* into regular REU program.
Specific features for minority students (REU+)

- Accept capable though underprepared underrepresented students.
- 2 week ramp up course before the project begins.
- HBCU mentors participate in ramp up program.
- *Totally integrated* into regular REU program.
Specific features for minority students (REU+)

- Accept capable though underprepared underrepresented students.
- 2 week ramp up course before the project begins.
- HBCU mentors participate in ramp up program.
- *Totally integrated* into regular REU program.
Specific benefits for early graduate students

Grads doing early research:

- Early grad students doing research early reminds them why they went to grad school, gives them a chance to test out areas/faculty.
- A more social research experience
- Leads to earlier advisor selection, shorter time to degree (ave. 5.1 years), better overall retention (96% for students participating in REG)
- Builds confidence that they can do research and should be mathematicians.
- Strengthens ties between current cohort of early graduate students (community building)
Specific benefits for early graduate students

Grads doing early research:

- Early grad students doing research early reminds them why they went to grad school, gives them a chance to test out areas/faculty.

- A more social research experience

- Leads to earlier advisor selection, shorter time to degree (ave. 5.1 years), better overall retention (96% for students participating in REG)

- Builds confidence that they can do research and should be mathematicians.

- Strengthens ties between current cohort of early graduate students (community building)
Specific benefits for early graduate students

Grads doing early research:

- Early grad students doing research early reminds them why they went to grad school, gives them a chance to test out areas/faculty.
- A more social research experience
- Leads to earlier advisor selection, shorter time to degree (ave. 5.1 years), better overall retention (96% for students participating in REG)
- Builds confidence that they can do research and should be mathematicians.
- Strengthens ties between current cohort of early graduate students (community building)
Specific benefits for early graduate students

Grads doing early research:

- Early grad students doing research early reminds them why they went to grad school, gives them a chance to test out areas/faculty.
- A more social research experience
- Leads to earlier advisor selection, shorter time to degree (ave. 5.1 years), better overall retention (96% for students participating in REG)
- Builds confidence that they can do research and should be mathematicians.
- Strengthens ties between current cohort of early graduate students (community building)
Specific benefits for early graduate students

Grads doing early research:

- Early grad students doing research early reminds them why they went to grad school, gives them a chance to test out areas/faculty.
- A more social research experience
- Leads to earlier advisor selection, shorter time to degree (ave. 5.1 years), better overall retention (96% for students participating in REG)
- Builds confidence that they can do research and should be mathematicians.
- Strengthens ties between current cohort of early graduate students (community building)
Specific benefits for current graduate students

Grads working with REU students:

- Grad students learn to be mentors.
- They improve their own ability as researchers by having to think about helping others. (Like learning calculus by teaching it)
- Builds confidence (they see how much they’ve grown in a few years since their own experience).
- Learn how to run undergrad research projects, a selling point for professorial jobs.
- Build a vertical community of mathematicians.
Grads working with REU students:

- Grad students learn to be mentors.
- They improve their own ability as researchers by having to think about helping others. (Like learning calculus by teaching it)
- Builds confidence (they see how much they’ve grown in a few years since their own experience).
- Learn how to run undergrad research projects, a selling point for professorial jobs.
- Build a vertical community of mathematicians.
Grads working with REU students:

- Grad students learn to be mentors.
- They improve their own ability as researchers by having to think about helping others. (Like learning calculus by teaching it)
- Builds confidence (they see how much they’ve grown in a few years since their own experience).
- Learn how to run undergrad research projects, a selling point for professorial jobs.
- Build a vertical community of mathematicians.
Grads working with REU students:

- Grad students learn to be mentors.
- They improve their own ability as researchers by having to think about helping others. (Like learning calculus by teaching it)
- Builds confidence (they see how much they’ve grown in a few years since their own experience).
- Learn how to run undergrad research projects, a selling point for professorial jobs.
- Build a vertical community of mathematicians.
Specific benefits for current graduate students

Grads working with REU students:

- Grad students learn to be mentors.
- They improve their own ability as researchers by having to think about helping others. (Like learning calculus by teaching it)
- Builds confidence (they see how much they’ve grown in a few years since their own experience).
- Learn how to run undergrad research projects, a selling point for professorial jobs.
- Build a vertical community of mathematicians.
More than 90% American students.
- Recruit from REU, smaller colleges and universities, take capable though underprepared students.
- Make undergraduate classes available without stigma
- Variable time to qualifying exams
- Good mentoring

Community building.

Early research experiences

Modern curriculum and flexible qualifying exams. (15 possible, must take 3)
More than 90% American students.

- Recruit from REU, smaller colleges and universities, take capable though underprepared students.
- Make undergraduate classes available without stigma
- Variable time to qualifying exams
- Good mentoring

- Community building.
- Early research experiences
- Modern curriculum and flexible qualifying exams. (15 possible, must take 3)
More than 90% American students.

- Recruit from REU, smaller colleges and universities, take capable though underprepared students.
- Make undergraduate classes available without stigma
- Variable time to qualifying exams
- Good mentoring

Community building.

Early research experiences

Modern curriculum and flexible qualifying exams. (15 possible, must take 3)
More than 90% American students.
- Recruit from REU, smaller colleges and universities, take capable though underprepared students.
- Make undergraduate classes available without stigma
- variable time to qualifying exams
- Good mentoring

Community building.

Early research experiences

Modern curriculum and flexible qualifying exams. (15 possible, must take 3)
Graduate PhD Program Features

- More than 90% American students.
 - Recruit from REU, smaller colleges and universities, take capable though underprepared students.
 - Make undergraduate classes available without stigma
 - Variable time to qualifying exams
 - Good mentoring

- Community building.
- Early research experiences
- Modern curriculum and flexible qualifying exams. (15 possible, must take 3)
More than 90% American students.
- Recruit from REU, smaller colleges and universities, take capable though underprepared students.
- Make undergraduate classes available without stigma
- Variable time to qualifying exams
- Good mentoring

Community building.
- Early research experiences
- Modern curriculum and flexible qualifying exams. (15 possible, must take 3)
Graduate PhD Program Features

- More than 90% American students.
 - Recruit from REU, smaller colleges and universities, take capable though underprepared students.
 - Make undergraduate classes available without stigma
 - variable time to qualifying exams
 - Good mentoring

- Community building.

- Early research experiences
 - Modern curriculum and flexible qualifying exams. (15 possible, must take 3)
Graduate PhD Program Features

- More than 90% American students.
 - Recruit from REU, smaller colleges and universities, take capable though underprepared students.
 - Make undergraduate classes available without stigma
 - Variable time to qualifying exams
 - Good mentoring

- Community building.

- Early research experiences

- Modern curriculum and flexible qualifying exams. (15 possible, must take 3)
207 graduate students, of whom 142 are PhD (131 US), 65 MS (mostly Financial Math. Professional Masters Degree).

83 TA lines, remaining PhD funded by RA or fellowship. Guarantee 5 years funding, (more as needed).

56 tenure track faculty.

50+% women PhD students admitted for at least the last 9 years.

Currently 19 African American PhD students and 2 Hispanic. Each year since 2004, 1-3 African Americans earned a PhD in Math at NCSU. (This is 12% of all AA PhD's at group 1 or 2 universities).

Before the summer programs new stats
207 graduate students, of whom 142 are PhD (131 US), 65 MS (mostly Financial Math. Professional Masters Degree).

83 TA lines, remaining PhD funded by RA or fellowship. Guarantee 5 years funding, (more as needed).

56 tenure track faculty.

50+% women PhD students admitted for at least the last 9 years.

Currently 19 African American PhD students and 2 Hispanic. Each year since 2004, 1-3 African Americans earned a PhD in Math at NCSU. (This is 12% of all AA PhD's at group 1 or 2 universities).

Before the summer programs new stats
Grad program Data

- 207 graduate students, of whom 142 are PhD (131 US), 65 MS (mostly Financial Math. Professional Masters Degree).
- 83 TA lines, remaining PhD funded by RA or fellowship. Guarantee 5 years funding, (more as needed).
- 56 tenure track faculty.
- 50+% women PhD students admitted for at least the last 9 years.
- Currently 19 African American PhD students and 2 Hispanic. Each year since 2004, 1-3 African Americans earned a PhD in Math at NCSU. (This is 12% of all AA PhD’s at group 1 or 2 universities).
- Before the summer programs, new stats

Retention rate at 3 years was 72%
Current rate 96%
5 year completion rate was 56%
Current rate 83%
6 year completion was 65%
Current rate 93%
Grad program Data

- 207 graduate students, of whom 142 are PhD (131 US), 65 MS (mostly Financial Math. Professional Masters Degree).
- 83 TA lines, remaining PhD funded by RA or fellowship. Guarantee 5 years funding, (more as needed).
- 56 tenure track faculty.
- 50+% women PhD students admitted for at least the last 9 years.
- Currently 19 African American PhD students and 2 Hispanic. Each year since 2004, 1-3 African Americans earned a PhD in Math at NCSU. (This is 12% of all AA PhD’s at group 1 or 2 universities).
- Before the summer programs new stats
207 graduate students, of whom 142 are PhD (131 US), 65 MS (mostly Financial Math. Professional Masters Degree).

83 TA lines, remaining PhD funded by RA or fellowship. Guarantee 5 years funding, (more as needed).

56 tenure track faculty.

50+% women PhD students admitted for at least the last 9 years.

Currently 19 African American PhD students and 2 Hispanic. Each year since 2004, 1-3 African Americans earned a PhD in Math at NCSU. (This is 12% of all AA PhD’s at group 1 or 2 universities).

Before the summer programs new stats
Grad program Data

- 207 graduate students, of whom 142 are PhD (131 US), 65 MS (mostly Financial Math. Professional Masters Degree).
- 83 TA lines, remaining PhD funded by RA or fellowship. Guarantee 5 years funding, (more as needed).
- 56 tenure track faculty.
- 50+% women PhD students admitted for at least the last 9 years.
- Currently 19 African American PhD students and 2 Hispanic. Each year since 2004, 1-3 African Americans earned a PhD in Math at NCSU. (This is 12% of all AA PhD’s at group 1 or 2 universities).
- Before the summer programs new stats
207 graduate students, of whom 142 are PhD (131 US), 65 MS (mostly Financial Math. Professional Masters Degree).

83 TA lines, remaining PhD funded by RA or fellowship. Guarantee 5 years funding, (more as needed).

56 tenure track faculty.

50+% women PhD students admitted for at least the last 9 years.

Currently 19 African American PhD students and 2 Hispanic. Each year since 2004, 1-3 African Americans earned a PhD in Math at NCSU. (This is 12% of all AA PhD’s at group 1 or 2 universities).

Before the summer programs new stats
207 graduate students, of whom 142 are PhD (131 US), 65 MS (mostly Financial Math. Professional Masters Degree).

83 TA lines, remaining PhD funded by RA or fellowship. Guarantee 5 years funding, (more as needed).

56 tenure track faculty.

50+% women PhD students admitted for at least the last 9 years.

Currently 19 African American PhD students and 2 Hispanic. Each year since 2004, 1-3 African Americans earned a PhD in Math at NCSU. (This is 12% of all AA PhD’s at group 1 or 2 universities).

Before the summer programs

- Retention rate at 3 years was 72%
207 graduate students, of whom 142 are PhD (131 US), 65 MS (mostly Financial Math. Professional Masters Degree).

83 TA lines, remaining PhD funded by RA or fellowship. Guarantee 5 years funding, (more as needed).

56 tenure track faculty.

50+% women PhD students admitted for at least the last 9 years.

Currently 19 African American PhD students and 2 Hispanic. Each year since 2004, 1-3 African Americans earned a PhD in Math at NCSU. (This is 12% of all AA PhD’s at group 1 or 2 universities).

Before the summer programs new stats

- Retention rate at 3 years was 72%
Grad program Data

- 207 graduate students, of whom 142 are PhD (131 US), 65 MS (mostly Financial Math. Professional Masters Degree).
- 83 TA lines, remaining PhD funded by RA or fellowship. Guarantee 5 years funding, (more as needed).
- 56 tenure track faculty.
- 50+% women PhD students admitted for at least the last 9 years.
- Currently 19 African American PhD students and 2 Hispanic. Each year since 2004, 1-3 African Americans earned a PhD in Math at NCSU. (This is 12% of all AA PhD’s at group 1 or 2 universities).
- Before the summer programs (new stats)
 - Retention rate at 3 years was 72%
 - Current rate 96%
Grad program Data

- 207 graduate students, of whom 142 are PhD (131 US), 65 MS (mostly Financial Math. Professional Masters Degree).
- 83 TA lines, remaining PhD funded by RA or fellowship. Guarantee 5 years funding, (more as needed).
- 56 tenure track faculty.
- 50+% women PhD students admitted for at least the last 9 years.
- Currently 19 African American PhD students and 2 Hispanic. Each year since 2004, 1-3 African Americans earned a PhD in Math at NCSU. (This is 12% of all AA PhD's at group 1 or 2 universities).
- Before the summer programs
 - Retention rate at 3 years was 72%
 - 5 year completion rate was 56%.

New stats

- Current rate 96%
207 graduate students, of whom 142 are PhD (131 US), 65 MS (mostly Financial Math. Professional Masters Degree).

83 TA lines, remaining PhD funded by RA or fellowship. Guarantee 5 years funding, (more as needed).

56 tenure track faculty.

50+% women PhD students admitted for at least the last 9 years.

Currently 19 African American PhD students and 2 Hispanic. Each year since 2004, 1-3 African Americans earned a PhD in Math at NCSU. (This is 12% of all AA PhD’s at group 1 or 2 universities).

Before the summer programs

- Retention rate at 3 years was 72%
- 5 year completion rate was 56%.

Current rate 96%
207 graduate students, of whom 142 are PhD (131 US), 65 MS (mostly Financial Math. Professional Masters Degree).

83 TA lines, remaining PhD funded by RA or fellowship. Guarantee 5 years funding, (more as needed).

56 tenure track faculty.

50+% women PhD students admitted for at least the last 9 years.

Currently 19 African American PhD students and 2 Hispanic. Each year since 2004, 1-3 African Americans earned a PhD in Math at NCSU. (This is 12% of all AA PhD’s at group 1 or 2 universities).

Before the summer programs

- Retention rate at 3 years was 72%
- 5 year completion rate was 56%.

new stats

Current rate 96%
Current rate 83%
207 graduate students, of whom 142 are PhD (131 US), 65 MS (mostly Financial Math. Professional Masters Degree).

83 TA lines, remaining PhD funded by RA or fellowship. Guarantee 5 years funding, (more as needed).

56 tenure track faculty.

50+% women PhD students admitted for at least the last 9 years.

Currently 19 African American PhD students and 2 Hispanic. Each year since 2004, 1-3 African Americans earned a PhD in Math at NCSU. (This is 12% of all AA PhD’s at group 1 or 2 universities).

Before the summer programs new stats

- Retention rate at 3 years was 72%
- 5 year completion rate was 56%.
- 6 year completion was 65%.

Current rate 96% Current rate 83%
207 graduate students, of whom 142 are PhD (131 US), 65 MS (mostly Financial Math. Professional Masters Degree).

83 TA lines, remaining PhD funded by RA or fellowship. Guarantee 5 years funding, (more as needed).

56 tenure track faculty.

50+% women PhD students admitted for at least the last 9 years.

Currently 19 African American PhD students and 2 Hispanic. Each year since 2004, 1-3 African Americans earned a PhD in Math at NCSU. (This is 12% of all AA PhD’s at group 1 or 2 universities).

Before the summer programs

- Retention rate at 3 years was 72%
- 5 year completion rate was 56%
- 6 year completion was 65%

New stats

- Current rate 96%
- Current rate 83%
207 graduate students, of whom 142 are PhD (131 US), 65 MS (mostly Financial Math. Professional Masters Degree).

83 TA lines, remaining PhD funded by RA or fellowship. Guarantee 5 years funding, (more as needed).

56 tenure track faculty.

50+% women PhD students admitted for at least the last 9 years.

Currently 19 African American PhD students and 2 Hispanic. Each year since 2004, 1-3 African Americans earned a PhD in Math at NCSU. (This is 12% of all AA PhD’s at group 1 or 2 universities).

Before the summer programs

- Retention rate at 3 years was 72%
- 5 year completion rate was 56%
- 6 year completion was 65%

new stats

Current rate 96%
Current rate 83%
Current rate 93%
207 graduate students, of whom 142 are PhD (131 US), 65 MS

83 TA lines, remaining PhD funded by RA or fellowship. Guarantee 5
years funding, (more as needed).

56 tenure track faculty.

50+% women PhD students admitted for at least the last 9 years.

Currently 19 African American PhD students and 2 Hispanic. Each
year since 2004, 1-3 African Americans earned a PhD in Math at
NCSU. (This is 12% of all AA PhD’s at group 1 or 2 universities).

Before the summer programs

- Retention rate at 3 years was 72% new stats
- 5 year completion rate was 56%. Current rate 96%
- 6 year completion was 65%. Current rate 83%
- Current rate 93%
Costs and Obstacles

- **New admissions profile.**
 - Additional attention needed by faculty towards students. (REU mentors, REG mentors, more interaction with early grad students, more POSITIVE interaction)

- Faculty buy in.
 - Students seem to need support and encouragement, but when we give it they excell!

- Need key faculty on board to help convince others. The results are apparent.

- These new interactions with students are fun!

- Easier than supervising an individual grad student (teams help each other).

- Leadership and funding are crucial.
Costs and Obstacles

- New admissions profile.
- Additional attention needed by faculty towards students. (REU mentors, REG mentors, more interaction with early grad students, more POSITIVE interaction)
- Faculty buy in.
- Students seem to need support and encouragement, but when we give it they excell!
- Need key faculty on board to help convince others. The results are apparent.
- These new interactions with students are fun!
- Easier than supervising an individual grad student (teams help each other).
- Leadership and funding are crucial.
Costs and Obstacles

- New admissions profile.
- Additional attention needed by faculty towards students. (REU mentors, REG mentors, more interaction with early grad students, more POSITIVE interaction)
- Faculty buy in.
 - Students seem to need support and encouragement, but when we give it they excell!
 - Need key faculty on board to help convince others. The results are apparent.
 - These new interactions with students are fun!
 - Easier than supervising an individual grad student (teams help each other).
- Leadership and funding are crucial.
New admissions profile.

Additional attention needed by faculty towards students. (REU mentors, REG mentors, more interaction with early grad students, more POSITIVE interaction)

Faculty buy in.

Students seem to need support and encouragement, but when we give it they excell!

Need key faculty on board to help convince others. The results are apparent.

These new interactions with students are fun!

Easier than supervising an individual grad student (teams help each other).

Leadership and funding are crucial.
Costs and Obstacles

- New admissions profile.
- Additional attention needed by faculty towards students. (REU mentors, REG mentors, more interaction with early grad students, more POSITIVE interaction)
- Faculty buy in.
- Students seem to need support and encouragement, but when we give it they excell!
- Need key faculty on board to help convince others. The results are apparent.
- These new interactions with students are fun!
- Easier than supervising an individual grad student (teams help each other).
- Leadership and funding are crucial.
Costs and Obstacles

- New admissions profile.
- Additional attention needed by faculty towards students. (REU mentors, REG mentors, more interaction with early grad students, more POSITIVE interaction)
- Faculty buy in.
- Students seem to need support and encouragement, but when we give it they excell!
- Need key faculty on board to help convince others. The results are apparent.
- These new interactions with students are fun!
 - Easier than supervising an individual grad student (teams help each other).
 - Leadership and funding are crucial.
Costs and Obstacles

- New admissions profile.
- Additional attention needed by faculty towards students. (REU mentors, REG mentors, more interaction with early grad students, more POSITIVE interaction)
- Faculty buy in.
- Students seem to need support and encouragement, but when we give it they excell!
- Need key faculty on board to help convince others.
 The results are apparent.
- These new interactions with students are fun!
- Easier than supervising an individual grad student (teams help each other).
- Leadership and funding are crucial.
Costs and Obstacles

- New admissions profile.
- Additional attention needed by faculty towards students. (REU mentors, REG mentors, more interaction with early grad students, more POSITIVE interaction)
- Faculty buy in.
- Students seem to need support and encouragement, but when we give it they excell!
- Need key faculty on board to help convince others. The results are apparent.
- These new interactions with students are fun!
- Easier than supervising an individual grad student (teams help each other).
- Leadership and funding are crucial.