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Abstract Dynamic symbioses with functionally diverse

dinoflagellate algae in the genus Symbiodinium may allow

some reef corals to alter their phenotypes through ‘sym-

biont shuffling’, or changes in symbiont community com-

position. In particular, corals may become more bleaching

resistant by increasing the relative abundance of thermally

tolerant Symbiodinium in clade D after bleaching. Despite

the immediate relevance of this phenomenon to corals

living in warming oceans—and to interventions aimed at

boosting coral resilience—the mechanisms governing how,

why, and when symbiont shuffling occurs are still poorly

understood. Here, we performed controlled thermal

bleaching and recovery experiments on three species of

Caribbean corals hosting mixtures of D1a (S. trenchii) and

other symbionts in clades B or C. We show that the degree

of symbiont shuffling is related to (1) the duration of stress

exposure and (2) the difference in photochemical efficiency

(Fv/Fm) of co-occurring symbionts under stress (i.e., the

‘photochemical advantage’ of one symbiont over the

other). The advantage of D1a under stress was greatest in

Montastraea cavernosa, intermediate in Siderastrea side-

rea, and lowest in Orbicella faveolata and correlated

positively with the magnitude of shuffling toward D1a. In

holobionts where D1a had less of an advantage over co-

occurring symbionts (i.e., only slightly higher Fv/Fm under

stress), a longer stress duration was required to elicit

commensurate increases in D1a abundance. In fact, across

these three coral species, 92.9% of variation in the degree

of symbiont shuffling could be explained by the time-in-

tegrated photochemical advantage of D1a under heat stress.

Although Fv/Fm is governed by numerous factors that this

study is unable to resolve mechanistically, its strong

empirical relationship with symbiont shuffling helps elu-

cidate general features that govern this process in reef

corals, which will help refine predictions of coral responses

to environmental change and inform interventions to

manipulate symbiont communities to enhance coral

resilience.
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Introduction

Coral reef ecosystems are declining globally at an alarming

rate, primarily due to mass coral bleaching caused by

anthropogenic increases in sea surface temperature

(Hoegh-Guldberg et al. 2007). Heat-induced bleaching, or

the loss of corals’ nutritional symbionts (Symbiodinium

spp.; Jokiel and Coles 1977), often leads to coral mortality,

which precipitates reef ecosystem degradation (Glynn

1993). Worst-ever coral bleaching and mortality have

recently been recorded on many reefs in the central and

western Pacific (Hughes et al. 2017; Couch et al. 2017),

and annual recurring bleaching events are projected to

become increasingly frequent in the near future (van

Hooidonk et al. 2015).
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However, depending on the severity of bleaching, some

corals may recover their Symbiodinium communities

within weeks to months (Jokiel and Coles 1977; Jones and

Yellowlees 1997; Cunning et al. 2016) and ultimately

return to a healthy state. Moreover, the loss and subsequent

re-establishment of the symbiotic algal community may

provide an opportunity for change in its composition, i.e.,

the relative abundance of different Symbiodinium types

(Buddemeier and Fautin 1993; Baker 2001). When such

‘symbiont shuffling’ (Baker 2003) occurs, the new con-

figuration of the Symbiodinium assemblage may be better

suited to tolerate future bleaching stressors (Berkelmans

and van Oppen 2006; Silverstein et al. 2015), indicating

that bleaching may have adaptive value in allowing corals

to rapidly acclimatize to changing conditions. Moreover,

this phenomenon could be leveraged as a way to increase

the resilience of reef corals through directed manipulation

of Symbiodinium communities (Baker et al. 2008).

Symbiodinium is a highly diverse genus comprised of

nine clades (Pochon et al. 2014), which are further subdi-

vided into numerous types (with species descriptions

underway; LaJeunesse et al. 2014; Wham et al. 2017) with

varying functional biology (Suggett et al. 2015; Goyen

et al. 2017). Symbiodinium D1a, also referred to as S.

trenchii, is a heat-tolerant symbiont that confers a bleach-

ing threshold * 1–2 �C higher than other Symbiodinium

types (Silverstein et al. 2017). Increases in the abundance

of clade D symbionts have been observed during and after

bleaching in several coral species (Baker et al. 2004; Jones

et al. 2008; LaJeunesse et al. 2009), and increases in clade

A have been observed in others (Grottoli et al. 2014).

Moreover, the majority of coral species surveyed have been

observed in association with Symbiodinium from multiple

clades (Silverstein et al. 2012), suggesting that the potential

for symbiont shuffling is widespread among corals.

Nevertheless, the mechanisms governing the process of

symbiont shuffling, and why it readily occurs in some

corals but not others, are still poorly understood. In Orbi-

cella faveolata, symbiont shuffling was shown to depend

on the severity of bleaching (i.e., the magnitude of dis-

turbance to the existing community), as well as the envi-

ronmental conditions during recovery (Cunning et al.

2015a), suggesting that the relative performance of dif-

ferent symbionts influences the trajectory of symbiont

community re-establishment. These dynamics may also be

influenced by the changing internal environment and/or

metabolic requirements of the host (Suggett et al. 2017).

However, general rules that link symbiont performance to

variability in symbiont shuffling among coral species with

different Symbiodinium types have never been identified.

Ultimately, a deeper understanding of symbiont commu-

nity dynamics in corals is a critical foundation for pre-

dicting corals’ responses to environmental change (Logan

et al. 2014) and manipulating symbiont communities as a

way to increase resilience in coral reef restoration (van

Oppen et al. 2015).

Here, we investigated symbiont shuffling through con-

trolled bleaching experiments with three Caribbean coral

species hosting mixed Symbiodinium assemblages: O.

faveolata (with clades B and D), Siderastrea siderea (with

clades C and D), and Montastraea cavernosa (with clades

C and D). Symbiont photophysiological performance was

measured as photochemical efficiency (Fv/Fm), an emer-

gent phenotype reflecting numerous underlying processes

including photoacclimation and photodamage (Suggett

et al. 2009, 2015). While differences in Fv/Fm cannot be

attributed to a specific mechanism, we interpret higher

values as an advantage reflecting greater capacity for PSII

photochemistry. We used this metric to test links between

the photophysiological performance of co-occurring sym-

bionts and the magnitude of symbiont shuffling after

bleaching.

Materials and methods

Experimental manipulations

Two separate bleaching and recovery experiments were

conducted. The first experiment included both O. faveolata

(3 colonies, 22–37 cores per colony, n = 87 cores total)

and S. siderea (12 colonies, 5–15 cores per colony,

n = 138 cores total), with bleaching treatments of expo-

sure to 32 �C for 7, 10, and 14 d (Cunning et al. 2015a) and

recovery for 3 months at 24 or 29 �C. The second experi-

ment was conducted on M. cavernosa (9 colonies, 6–9

cores per colony, n = 69 cores total), with a bleaching

treatment of 32 �C for 10 d (Silverstein et al. 2015) and

recovery for 3 months at 24 or 29 �C. Prior to experi-

mentation, the O. faveolata cores contained varying mix-

tures of Symbiodinium in clades B and D (Cunning et al.

2015a), while S. siderea colonies contained mixtures of

clades C and D (Cunning 2013). Montastraea cavernosa

contained only clade C Symbiodinium upon collection, but

an initial bleaching and recovery experiment involving

some of these cores produced a range of mixtures of clades

C and D (Silverstein et al. 2015). Both experiments were

conducted in the same indoor, semi-recirculating coral

culture facility at the University of Miami. For additional

details on coral collection and experimental setup, see

Silverstein et al. (2015) and Cunning et al. (2015a).

Sampling and data collection

In both experiments, maximum Fv/Fm of Symbiodinium

within each coral core was measured prior to heat stress
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and at the end of heat stress using an imaging PAM fluo-

rometer (Walz, Effeltrich, Germany) to deliver a saturating

pulse at 2800 lmol photons m-2 s-1 at 460 nm for

800 ms. At the same time points, small tissue biopsies were

taken from each core for genomic DNA extraction, and

quantitative qPCR assays were used to compute the relative

abundance of Symbiodinium clades, including the propor-

tion of clade D (represented exclusively by D1a/S. trenchii;

Pettay et al. 2015) within the community. Tissue samples

were collected again after 3 months of recovery from

bleaching to analyze changes in Symbiodinium community

structure (i.e., symbiont shuffling). For additional details on

sampling and data collection, see Silverstein et al. (2015)

and Cunning et al. (2015a).

Data analysis

Fv/Fm was analyzed by a linear mixed model (lmer; Bates

et al. 2015) with fixed effects of time (pre- or post-heat

stress), proportion D1a (measured at the same time point),

and coral species, with random intercepts for each colony.

Backward elimination of nonsignificant effects from a fully

crossed model was performed using partial F tests in

lmerTest (Kuznetsova et al. 2015). By relating the photo-

chemical efficiency of Symbiodinium communities to their

taxonomic composition (sensu Suggett et al. 2009), we can

tease apart the relative photochemical performance of the

two different symbionts in each coral. Specifically,

regression coefficients for the proportion of D1a were

interpreted as the photochemical advantage of D1a for each

coral species under ambient (pre-heat stress; AAmb
D ) and

heated (post-heat stress; AHeat
D ) conditions and tested for

statistical differences by pairwise comparisons using

lsmeans (Lenth 2016). Stress duration (i.e., 7, 10, or 14 d)

was not included as a predictor since it had no impact on

the photochemical advantage of D1a in the first experiment

(i.e., no significant interaction between stress duration and

proportion of D1a).

Symbiont shuffling was analyzed by modeling the final

proportion of D1a (after 3 months of recovery) as a func-

tion of the initial proportion D1a (before bleaching), using

a quasi-binomial generalized linear model (GLM) with

species, stress duration, and recovery temperature as co-

predictors. Fitted values for the final proportion of D1a for

each species at each stress duration (averaged across

recovery temperatures and predicted for M. cavernosa at 7-

and 14-d durations using the effects package; Fox 2003),

were plotted against initial proportion of D1a with 90%

confidence intervals. From these fitted values, an integrated

metric of symbiont shuffling was generated across the full

range of initial D1a proportions by calculating the area

between the fitted curve for each group and the diagonal

line of identity. (The line of identity indicates no change in

symbiont proportions.) This metric was scaled to a range of

- 1 (complete loss of D1a) to ? 1 (complete dominance

by D1a), with zero indicating no symbiont shuffling.

Finally, we used a quasi-binomial GLM to model the

integrated symbiont shuffling response as a function of the

photochemical advantage of D1a under heat stress (AHeat
D )

for each species and days of exposure to heat stress. All

data analysis was conducted using R v3.3.1 (R Core Team

2016). Data and R code to reproduce all analyses and fig-

ures presented here are available at github.com/jrcunning/

symshuff-3c, and archived at Zenodo (Cunning 2017).

Results

Photochemistry of symbiont assemblages

Measured values of Fv/Fm were significantly affected by

the proportion of D1a in symbiont assemblages (Fig. 1),

but this effect varied among coral species and between

ambient and heat stress conditions (three-way interaction,

F = 4.06, p = 0.018). In all three coral species, a higher

relative abundance of D1a led to lower Fv/Fm under

ambient conditions, but higher Fv/Fm under heat stress.

Within each species and treatment, we operationally define

the photochemical advantage of D1a (Fig. 2) as the dif-

ference in Fv/Fm when proportion D1a = 1 and when

proportion D1a = 0 (i.e., the slope of each line in Fig. 1).

The advantage of D1a under ambient conditions (AAmb
D )

was significantly more negative (i.e., a greater disadvan-

tage) in O. faveolata (- 0.09) compared to M. cavernosa

(- 0.034, p = 0.011) and intermediate (- 0.051, but not

significantly different, p[ 0.1) in S. siderea. Under heat

Fig. 1 Photochemical efficiency (Fv/Fm) as a function of the

proportion of D1a Symbiodinium in a Orbicella faveolata, b Sideras-

trea siderea, c Montastraea cavernosa. Solid lines represent ambient

conditions, and dotted lines represent the relationship under heat

stress (32 �C). Shaded regions represent 90% confidence intervals

around fitted values
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stress, the advantage of D1a (AHeat
D ) was greatest in M.

cavernosa (0.163), intermediate in S. siderea (0.103), and

lowest in O. faveolata (0.033, all pairwise comparisons,

p\ 0.002; Fig. 2).

Symbiont shuffling

The proportion of D1a after recovery from bleaching

(Fig. 3a) depended on the initial proportion of D1a

(F = 224.742, p\ 1e-04) and an interaction among coral

species, heat stress duration, and recovery temperature

(F = 5.527, p = 0.005). Fitted values were averaged

across recovery temperatures to focus on differences

among species and heat stress durations. Across the full

range of initial D1a proportions, the integrated symbiont

shuffling response, S (Fig. 3b), showed a loss of D1a in O.

faveolata after recovery from 7 and 10 d of heat stress

(S = - 0.378 and - 0.318, respectively), but a gain of

D1a after recovery from 14 d of heat stress (S = 0.6). In

contrast, S. siderea underwent greater shuffling toward D1a

after 7 d (S = 0.835), 10 d (S = 0.946), and 14 d

(S = 0.944) of heat stress. Montastraea cavernosa shuffled

almost completely to D1a assemblages following 10 d of

stress (S = 0.996), and thus, the statistical model also

predicted near complete shuffling to clade D symbionts

after 7 d (S = 0.996) and 14 d (S = 1) of heat stress.

Relationship between photochemistry and symbiont

shuffling

The magnitude of symbiont shuffling showed a statistically

significant relationship (Fig. 4a) with both the photo-

chemical advantage of D1a under heat stress (AHeat
D ,

F = 414.9, p\ 1e-04) and the duration of heat stress

Fig. 2 Photochemical advantage of D1a symbionts in each coral

species (Mcav = Montastraea cavernosa, Ssid = Siderastrea side-

rea, Ofav = Orbicella faveolata) under ambient conditions (darker

bars) and under heat stress (lighter bars). Values indicate the

difference in Fv/Fm of corals with all and no D1a symbionts (i.e.,

slopes of the lines in Fig. 1); error bars indicate 95% confidence

intervals

Fig. 3 Symbiont shuffling in three coral species. a Proportion of D1a

Symbiodinium before bleaching and after recovery; diagonal line of

identity represents no change in symbiont proportions. Fitted values

for each species (indicated by color; Mcav = Montastraea cavernosa,

Ssid = Siderastrea siderea, Ofav = Orbicella faveolata) and heat

stress duration (indicated by line type) are plotted with shaded areas

representing 95% confidence intervals. b Integrated symbiont shuf-

fling response (from before bleaching to after recovery) for each

species and bleaching treatment, calculated as the area above or

below the diagonal line of identity, normalized to a range of - 1 (i.e.,

a complete loss of D1a symbionts) to ? 1 (i.e., complete dominance

by D1a symbionts)
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(F = 69.7, p\ 1e-04). Specifically, increases in the

amount of D1a were greater for higher values of AHeat
D and

longer durations of heat stress. The model predicts the

duration of heat stress required to cause symbiont shuffling

toward D1a for different values of AHeat
D (Fig. 4a) and

shows that 7 d of heat stress resulted in shuffling toward

D1a for AHeat
D [* 0.06. Lower values of AHeat

D caused a

decrease in the proportion of D1a after recovery, and when

AHeat
D \* 0.01, D1a decreased even after 14 d of heat

stress.

Across these three coral species, the interaction of AHeat
D

and the duration of heat stress explained almost all (92.9%)

of the variability in the symbiont shuffling response

(Fig. 4b).

Discussion

These experiments revealed differences in the degree of

symbiont shuffling in three coral species that were strongly

related to differences in the photochemical efficiencies of

co-occurring symbionts. At ambient temperatures, D1a (S.

trenchii) symbionts had significantly lower Fv/Fm than the

other co-occurring symbionts within each coral host. Since

ambient temperatures are not expected to cause photo-

damage, the reduced photochemical efficiency of D1a may

be due to reduced nutrient sufficiency (Parkhill et al. 2001),

greater pigment antenna size or association with PSI

(Suggett et al. 2009), greater excitation ‘spillover’ from

PSII to PSI (Slavov et al. 2016), or other mechanisms of

non-photochemical quenching (Osmond 1994). Indeed,

inherent differences in photobiological traits produce tax-

onomic variation in Fv/Fm among broad microalgal classes

(Suggett et al. 2009) as well as different types of Symbio-

dinium (Suggett et al. 2008, 2015). Regardless of the

underlying mechanisms, the reduced photochemical effi-

ciency of D1a relative to other Symbiodinium in hospite

suggests D1a has a reduced potential for PSII photo-

chemistry under ambient conditions. This disadvantage

may explain why D-dominated corals tend to grow more

slowly under these conditions (Little et al. 2004; Jones and

Berkelmans 2010; Cunning et al. 2015b), and why D1a

may be displaced by other symbionts in the absence of

stress (Thornhill et al. 2006; LaJeunesse et al. 2009).

However, under heat stress, the relative performance of

symbionts was reversed, with D1a maintaining a higher

photochemical efficiency than each co-occurring symbiont.

These reductions in Fv/Fm can be attributed to accumula-

tion of damage impacting photosystem II, which is known

to vary among Symbiodinium types (Warner et al. 1996).

Indeed, clade D Symbiodinium have been shown to main-

tain higher Fv/Fm under heat stress (Rowan 2004; Silver-

stein et al. 2015), indicative of greater thermal tolerance.

However, the magnitude of D1a’s advantage under heat

stress differed among the three coral species, being greatest

in M. cavernosa, intermediate in S. siderea, and lowest in

O. faveolata.

The variable performance of different symbionts in

different coral hosts may be explained by variation in

symbiont-specific photobiological traits and/or host-

Fig. 4 a Symbiont shuffling response (as in Fig. 3b) as a function of

heat stress duration (days) and the photochemical advantage of D1a

under heat stress (AHeat
D ); lines correspond to the AHeat

D values for the

three coral species studied (indicated by colored lines; Mcav = Mon-

tastraea cavernosa, Ssid = Siderastrea siderea, Ofav = Orbicella

faveolata), and other (unobserved) values (gray lines). b Symbiont

shuffling responses observed across all three species are predicted

well (pseudo-R2 = 0.93) by the time-integrated photochemical

advantage of D1a under heat stress
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specific traits that modulate symbiont performance. For

example, coral tissue architecture may influence internal

light and nutrient microenvironments (Wangpraseurt et al.

2015), and host regulation of nitrogen and/or carbon

dioxide supply to symbionts may influence their perfor-

mance (Tansik et al. 2017). In both O. faveolata and S.

siderea, D1a symbionts showed the same Fv/Fm (Fig. 1a,

b), indicating that differences in the relative advantages of

D1a were driven by the differential performance of the

other co-occurring symbiont. D1a in M. cavernosa had

slightly lower Fv/Fm under ambient conditions (and higher

under heat stress) compared to D1a in the other two corals.

However, since this followed repeated bleaching in a

separate experiment for M. cavernosa (Silverstein et al.

2015), we are unable to attribute these differences to

unique host traits, the influence of prior bleaching and

recovery, or random experimental effects.

Nevertheless, we could test whether the relative photo-

physiological performance of the two symbionts within

each coral host was predictive of the magnitude of sym-

biont shuffling within that host following heat stress.

Indeed, * 93% of the variability in symbiont shuffling

was predicted by AHeat
D and the duration of heat stress

applied. Specifically, greater increases in D1a occurred

when AHeat
D was higher and when heat stress was longer.

Symbiont assemblages in which D1a had less of an

advantage under stress (e.g., O. faveolata) required more

stress to induce shuffling to D1a, while assemblages in

which D1a had a large advantage (e.g., M. cavernosa)

required less stress. This finding suggests that both the

relative sensitivity to stress and the duration of stress

determine symbiont shuffling, similar to the way that both

concentration and duration of exposure influence a phar-

macological response (Miller et al. 2000).

This statistical result reveals predictors of symbiont

shuffling but not necessarily the mechanisms underlying

them. However, we hypothesize that if D1a performs better

at 32 �C, it may be expelled at lower rates than co-occur-

ring symbionts (Silverstein et al. 2017), or may even

continue to proliferate. Furthermore, after heat stress is

alleviated (but corals have bleached), amplified internal

light environments characteristic of bleached corals

(Wangpraseurt et al. 2012) may sustain the photochemical

advantage of D1a, allowing it to proliferate at higher rates

as the symbiont population regrows. Only once symbionts

reach high densities may the internal microenvironment

(e.g., darker, more nutrient-scarce conditions) again put

D1a at a disadvantage, explaining why clade D may be

gradually replaced over time in the absence of stress

(Thornhill et al. 2006). Importantly, the rate of composi-

tional change in the scenario outlined here would be pro-

portional to the relative difference in the advantage of one

symbiont over another, consistent with our observations

across coral species.

Whether these same rules may apply in other Symbio-

dinium communities that shuffle between clade C and D

types (e.g., Acropora millepora on the Great Barrier Reef;

Jones et al. 2008) as well as those without clade D that

shuffle between other types (e.g., Porites with clades A and

C; Grottoli et al. 2014), remains to be investigated. Other

populations of O. faveolata may shuffle variously among

clades A, B, C, and D (Baker 1999; Grottoli et al. 2014). In

contrast, symbiont shuffling may be rare in other coral taxa,

such as Pocillopora in the Mexican Pacific (McGinley

et al. 2012) and Montipora capitata in Hawaii (Cunning

et al. 2016), despite the fact that these corals host members

of Symbiodinium clades C and D that differ greatly in their

sensitivity to stress. While the links identified here may not

explain symbiont community dynamics in all cases, this

study expands our understanding of symbiont shuffling in a

variety of important Caribbean reef-building coral taxa. A

better understanding of this phenomenon may help to (1)

predict responses of symbiont communities from in situ

measurements of Fv/Fm, a metric that is commonly col-

lected but perhaps underexplored with respect to ecological

applications, (2) refine predictive models of coral responses

to environmental change (Logan et al. 2014), and (3)

develop methods to manipulate symbiont communities in

corals, which may be an increasingly important tool in

coral reef conservation (van Oppen et al. 2015; Aswani

et al. 2015).
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