Qualitative Bt-Cry2Ab &Bt-Cry3Bb1 Dual Trait Testing

2016 SCST Superworkshop Immunoassay Day Iowa State Seed Science Center Daye Rambow

Overview

- Contents of kit
- Additional required materials
- Storing the reagents
- Intended use
- Test principle
- Limitations
- Preparation for the test
- Test procedure
- Test validity
- Interpreting Results

Contents of kit

- Antibody-coated 96 well microtiter plates
- Alkaline phosphatase & peroxidase enzyme conjugate mix, concentrated
- RUB6 enzyme conjugate diluent
- pNPP Substrate solution
- TMB Substrate solution
- Positive control
- PBST wash buffer

Additional required materials

- Distilled water
- Paper towels
- Micropipette and micropipette tips
- Seed & leaf extraction equipment
- Humid box for incubation
- Negative control
- Plate reader with 405nm & 650 nm filter

Storing the reagents

- Store all kit components @ 4°C to assure full shelf life
- Keep ELISA plate pouch sealed and desicated between uses
- Allow the components of the kit to warm to room temperature prior to use

Intended use

- This dual trait ELISA is validated to detect the presence or absence of Bt-Cry2Ab & Bt-Cry3Bb1 proteins expressed in corn seed containing events MON 89034 and / or MON 88017
- Shows no cross-reaction with other GMO proteins currently on the market

Test principle

- Direct Double Antibody Sandwich (DAS) ELISA
- Antibodies specific to Bt-Cry2Ab & Bt-Cry3Bb1 have been coated to the testwells of the microplate
- An enzyme conjugate containing monoclonal antibodies specific to Bt-Cry3Bb1 protein conjugated to alkaline phosphatase & monoclonal antibodies specific to Bt-Cry2Ab conjugated to horseradish peroxidase

Test principle

- Enzyme conjugate is added to the testwells followed by sample extracts
- If either protein is present in the sample, they are bound by the appropriate antibody and captured on the microplate
- After an incubation period, the plate is washed to remove any unbound enzyme conjugate and sample

Test principle

- pNPP substrate is added to the microplate
- If alkaline phosphatase conjugate is present, a yellow color will be produced signifying the presence of Bt-Cry3Bb1
- After a second wash step, the TMB substrate is added
- If peroxidase conjugate is present, a blue color will be produced signifying the presence of Bt-Cry2Ab
- The color reactions can be measured with a spectrophotometer or observed visually

Limitations

- Recommend for use with single seed
- For optimal results, 1X PBST must be used for sample extraction
- Do NOT use sample extraction buffer supplied with other ELISA kits
- Assay performance is very dependent on the proper sample to buffer ratio
- Protect substrate solutions from light, could cause background color in negative wells

Preparation for the test

- Familiarize yourself with the kit components and read the instructions carefully before performing the test
- Prepare buffers
- Prepare controls
- Prepare testwells (strip plates)
- Prepare humid box

Preparation for the test

Prepare samples

- Seed samples: Thoroughly crush seeds into a uniform powder (Dilute crushed seed samples in 1XPBST buffer at 1:10, typically 1 seed in 3ml buffer)
- Let stand at least 5 minutes at room temperature
- Use only the supernatant (top liquid layer) when adding sample extracts to testwells

Preparation for the test

- Prepare enzyme conjugate
 - The EC is concentrated (100x) and must be diluted with RUB6 enzyme conjugate diluent before use
 - Prior to use gently shake each vial 10 deconds or vortex for 5 seconds
 - Add 110µL of concentrated EC to 11ml of RUB6 diluent, this will be sufficient for one plate
 - Add 1.1ml of concentrated EC to 110 ml of RUB6 diluent, this will be sufficient for ten plates
 - Mix the EC thoroughly before adding it to the plate

- Add enzyme conjugate
 - Dispense 100μL of EC per well
- Dispense samples and controls
 - Following your loading diagram, dispense 100µL of each prepared sample into the appropriate wells of the ELISA plate
 - Mix the contents of the wells by gently swirling the plate on the bench-top
- Incubate plate
 - Set the plate inside the humid box and incubate one hours

Wash plate

- Empty testwells into a sink without allowing the contents of one testwell to mix with the contents of another testwell
- Fill all testwells completely with 1x PBST and quickly empty, repeat seven times
- It is very important all testwells are thoroughly washed
- After washing, hold the plate upside down and tap firmly on a paper towel to remove any excess liquid
- * If using an automated plate washer, be sure the machine is at the appropriate setting for flat bottom plates

- Add pNPP substrate solution
 - Add 100μL pNPP substrate to each testwell
 - Let the plate incubate for 30 minutes, keep testwells away from strong light
- Read at 405nm
 - Measure the optical density (O.D.) of the testwell on a plate reader at 405nm
 - Do NOT use a stop solution or make an subtractions from the O.D. values

Wash plate

- Wash the plate 8 times with 1x PBST
- After washing, hold plate upside down and tap firmly on a paper towel to remove any excess liquid

Add TMB substrate solution

- Add $100\mu L$ of the TMB substrate solution into each well of the plate
- Let the plate incubate for 30 minutes, keeping test wells away from strong light

Read at 650nm

- Measure the O.D. of the test wells on a plate reader at 650nm
- Do NOT use a stop solution or make any subtractions from the O.D. values

Test Validity

- For the test to be valid the following criteria must be met:
 - The positive control O.D. value must be greater than or equal to 1.0
 - The buffer O.D. value must be less than or equal to 0.110
 - The negative control O.D. value must be less than or equal to 0.15
 - O. D. values are based on raw data with no blanking or subtraction of negative values
 - Stop solutions cannot be used with this test and O. D. values obtained from stopping the reaction cannot be applied to this criterion

Interpreting results

Optical Density of Samples	Test Result
Greater than or equal to 0.5	Positive
Less than 0110	Negative

Trouble shooting

- Edge Effects: unexpected absorbance value variances from outside to inside. Most typically seen when plates are stacked or incubated at uneven temperatures
 - Positive effect: increase in OD values
 - Negative effects: decrease in OD values
- Main causes:
 - Incubation environment (various inconsistencies)
 - Cold plates or reagents (outside wells will be warmer)
 - Color developed in strong light

Trouble shooting

- Preventing Edge Effects
 - Plate sealers prevent evaporation
 - Strive for consistent temperature of plates, reagents and incubating plates, reagents and incubating environment – allow everything to warm up to the same temperature each time
 - Avoid harsh lighting
 - Avoid stacking plates if possible
 - Consistent plate washing

Trouble shooting

- Proper Handling of Substrates
 - Do not pipette directly from the substrate bottle
 - Never pour left over substrate back into the substrate bottle
 - Dispense substrate into ultra clean reagent reservoirs, and use immediately. Avoid re-using containers for substrates
 - Avoid intense light
 - Use caution if re-using pipette tips
 - Store at 4 to 5C

