April 14, 2017
Mr. Guy Byrne
Leslie Rudd Investment Company, Inc.
PO Box 105
Oakville, CA 94562-0105

Level of Service Analysis for Rudd Wines Winery \& Tasting Room

Dear Mr. Byrne;
As requested by County of Sonoma staff, W-Trans has prepared an operational analysis for the Rudd Wines Winery \& Tasting Room project. This work builds on information presented in the "Revised Traffic Study for Rudd Wines Winery \& Tasting Room," May 11, 2016, W-Trans. Following are our findings.

Level of Service Methodology

The roadway segment Level of Service methodology found in Chapter 15, "Two-Lane Highways," of the Highway Capacity Manual, 2010, is the basis of the automobile LOS analysis. The methodology considers traffic volumes, terrain, roadway cross-section, the proportion of heavy vehicles, and the availability of passing zones. Westside Road was considered a Class II highway facility as motorists do not necessarily expect to travel at high speeds on these types of roadways, which often function as scenic or recreational routes and typically serve shorter trips. The measure of effectiveness by which Level of Service is determined on a Class II highway is percent time spent following (PTSF), or the proportion of time that drivers on the highway are limited in their speed by a driver in front of them.

A summary of the breakpoints for the PTSF (and Percent of Free-Flow Speed, or PFFS, for Class III Highways) is shown in Table 1.

Table 1 - Two-Lane Highway Level of Service Criteria			
LOS	Class I Highways		
	PTSF (\%)	Class II Highways PTSF (\%)	Class III Highways PFFS (\%)
A	≤ 35	≤ 40	>91.7
B	$>35-50$	$>40-55$	$>83.3-91.7$
C	$>50-65$	$>55-70$	$>75.0-83.3$
D	$>65-80$	$>70-85$	$>66.7-75.0$
E	>80	≤ 85	≤ 66.7
Notes:	LOS = Level of Service; PTSF = Percent Time Spent Following		
Reference:	HFFS = Percent of Free-Flow Speed		

The Level of Service criterion for County roadway operations is to maintain a Level of Service C per Policy CT-3.1. For purposes of the analysis it was assumed that no passing is allowed in the study segment; in other words, the "no passing" zone represents 100 percent of the study segment.

Existing Conditions

Traffic counts were provided by County staff for Westside Road north of Felta Road; copies of this data are enclosed. These volumes are substantially higher than the counts obtained further south, near the site, so were
used to present a more conservative assessment. It is noted that counts as well as future volumes are only readily available for a weekday, so the following assessment represents this time period only. It is further noted that weekday p.m. peak hour counts are typically higher than weekend counts, so this time period normally reflects worst case conditions. Based on this available data, Westside Road carried 364 vehicles during the p.m. peak hour, which translates to LOS C operation in both directions.

The LOS results as well as the volumes on which they are based are summarized in Table 2 and copies of the calculations for all scenarios are enclosed for reference.

Table 2 - Two-Lane Highway Levels of Service for Westside Road (Felta Road to Mill Creek Road)

Scenario	Northbound			Southbound		
	Volume	PTSF	LOS	Volume	PTSF	LOS
Existing Conditions	187	59.5	C	177	57.8	C
Existing plus Project plus Event Conditions	226	61.9	C	232	62.1	C
Future Conditions	257	64.8	C	250	63.1	C
Future plus Project plus Event Conditions	296	65.1	C	305	66.5	C

Notes: LOS determined using the Two-Lane Highway methodology from the Highway Capacity Manual, 2010

Future Conditions

Future volumes on this segment of Westside Road were obtained from the travel demand model maintained by the Sonoma County Transportation Authority (SCTA). Based on the data reviewed, an estimated future volume of 507 vehicles per hour was used for the analysis, resulting in continued LOS C operation in both directions.

Plus Project Conditions

The proposed project is expected to generate 54 weekday peak hour trips during harvest, with 15 in (southbound) and 39 out (northbound). Assuming that a 100-person special event would begin during the weekday peak hour, and conservatively assigning all trips to one direction (southbound, from Healdsburg), 40 event-related trips were added to the trips associated with typical daily operation. It is noted that some employees would likely remain at the site for an event, if one were to start during the peak hour, but no deductions were taken to reflect this. Even using these conservative assumptions, Westside Road would be expected to continue operating at LOS C in both directions upon adding project-generated trips to either existing or future volumes.

Conclusions

- Westside Road is currently operating at LOS C and is expected to continue doing so in the future, including the worst case analysis of adding trips associated with operation of the winery during harvest together with a 100-person event.
- Traffic volumes on weekend days would be expected to be less than those during the weekday p.m. peak commute
- Volumes would need to increase beyond the levels projected for 2040 and using a worst case assessment with trips added based on both the harvest-period trip generation and a special event; this condition would be unlikely to occur even once a year. It therefore appears reasonable to conclude that the project has a less-than-significant impact on traffic operation.

We appreciate the opportunity to provide these services. Please call us if you have any questions.
Sincerely,

Dalene J. Whitlock, PE, PTOE Principal

DJW/Igd/SOX508.L2
Enclosures: Traffic Counts
Two-Lane Highway LOS Calculations

Date/Time/Volume/Average Speed/Temperature Report

HI-Star ID: 9417 Street: 8001 State: City: Westside Rd County: N/Felta Rd	Begin: 08/22/2012 12:00 Lane: 20.90 Oper: N/B Posted: 45 AADT Factor: 1		End: 08/24/2012 12:00 Hours: 48:00 Period: 60 Raw Count: 2996 AADT Count: 1498	
NC47				
Date \& Time Range	Count	Avg Speed	Temp	Wet/Dry
08/22/2012				
[12:00-13:00]	95	0 mph	121 F	Dry
[13:00-14:00] -	176	0 mph	128 F	Dry
[14:00-15:00]	104	0 mph	132 F	Dry
[15:00-16:00]	144	0 mph	128 F	Dry
[16:00-17:00]	151	0 mph	101 F	Dry
[17:00-18:00]	114	0 mph	91 F	Dry
[18:00-19:00]	56	0 mph	83 F	Dry
[19:00-20:00]	122	0 mph	78 F	Dry
[20:00-21:00]	18	0 mph	74 F	Dry
[21:00-22:00]	13	0 mph	70 F	Dry
[22:00-23:00]	6	0 mph	68 F	Dry
[23:00-00:00]	8	0 mph	68 F	Dry
08/23/2012				
[00:00-01:00]	4	0 mph	68 F	Dry
[01:00-02:00]	0	0 mph	68 F	Dry
[02:00-03:00]	2	0 mph	68 F	Dry
[03:00-04:00]	1	0 mph	66 F	Dry
[04:00-05:00]	7	0 mph	66 F	Dry
[05:00-06:00]	15	0 mph	64 F	Dry
[06:00-07:00]	34	0 mph	64 F	Dry
[07:00-08:00]	72	0 mph	64 F	Dry
- [08:00-09:00]-	155	0 mph	68 F	Dry
[09:00-10:00]	47	0 mph	74 F	Dry
[10:00-11:00]	86	0 mph	74 F	Dry
[11:00-12:00]	93	0 mph	101 F	Dry
[12:00-13:00]	93	0 mph	119 F	Dry
[13:00-14:00]	91	0 mph	126 F	Dry
- [14:00-15:00] -	187	0 mph	130 F	Dry
[15:00-16:00]	136	0 mph	128 F	Dry
[16:00-17:00]	153	0 mph	101 F	Dry
[17:00-18:00]	112	0 mph	91 F	Dry
[18:00-19:00]	63	0 mph	83 F	Dry
[19:00-20:00]	27	0 mph	78 F	Dry
[20:00-21:00]	27	0 mph	76 F	Dry
[21:00-22:00]	24	0 mph	72 F	Dry
[22:00-23:00]	13	0 mph	70 F	Dry
[23:00-00:00]	5	0 mph	66 F	Dry
08/24/2012 0 - 0 F				
[00:00-01:00]	0	0 mph	66 F	Dry
[01:00-02:00]	0	0 mph	64 F	Dry

Page: 1

Date/Time/Volume/Average Speed/Temperature Report

Page: 1

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET	
General Information	Site Information
Analyst Dalene Whitlock Agency or Company W-Trans Date Performed $4 / 10 / 2017$ Analysis Time Period Weekday Peak Period	Highway / Direction of Travel Westside Road From/To Jurisdiction Sonoma County Analysis Year 2014
Project Description: Rudd Wines Winery	
Input Data	
Average Travel Speed	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	2.3 2.3
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.1 1.1
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.948 0.948
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	0.76 0.75
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	288 277
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed
Mean speed of sample ${ }^{3}, \mathrm{~S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(v / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $3.5 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $45.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit $15-7)$ $5.3 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $1.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $38.2 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $30.3 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 79.4% Percent free flow speed, PFFS
Percent Time-Spent-Following	
	Analysis Direction (d) \quad Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.7 1.8
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0 1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.973 0.969
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	0.80 0.80
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	267 254
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	28.9
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \mathrm{PTSF}}$ (Exhibit 15-21)	59.7
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, P T S F}\right) \end{aligned}$	59.5
Level of Service and Other Performance Measures	
Level of service, LOS (Exhibit 15-3)	C
Volume to capacity ratio, v/c	0.53

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst Dalene Whitlock Agency or Company W-Trans Date Performed $4 / 10 / 2017$ Analysis Time Period Weekday Peak Period	Highway / Direction of Travel From/To Jurisdiction Analysis Year	Westside Road Mill Creek to Felt (SB) Sonoma County 2014
Project Description: Rudd Wines Winery		
Input Data		
		highway Class II
Average Travel Speed		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	2.3	2.3
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.1	1.1
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.948	0.948
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	0.75	0.76
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	277	288
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $3.4 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $45.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $5.3 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit 15-8) $1.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS- $\left.\mathrm{f}_{\mathrm{LS}}{ }^{-\mathrm{f}_{\mathrm{A}}}\right)$ $38.2 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $30.4 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ Percent free flow speed, PFFS 79.5%	
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.8	1.7
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.969	0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	0.80	0.80
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	254	267
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	28.7	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	59.7	
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, \text { PTSF }}\right) \end{aligned}$	57.8	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	C	
Volume to capacity ratio, v/c	0.53	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst Dalene Whitlock Agency or Company W-Trans Date Performed $4 / 10 / 2017$ Analysis Time Period Weekday + Project + Event	Highway / Direction of Travel From/To Jurisdiction Analysis Year	Westside Road Felta to Mill Creek (NB) Sonoma County 2014
Project Description: Rudd Wines Winery		
Input Data		
		highway Class II
Average Travel Speed		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	2.2	2.2
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.1	1.1
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.951	0.951
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	0.79	0.80
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	334	339
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{v} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $3.1 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $5.3 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $1.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS-f $\left.\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}}\right)$ $48.2 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $39.9 \mathrm{mi} / \mathrm{h}$ $\left.v_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 82.7% Percent free flow speed, PFFS 8	
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.7	1.7
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.973	0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	0.83	0.83
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	311	319
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	34.7	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	55.1	
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, \text { PTSF }}\right) \end{aligned}$	61.9	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	C	
Volume to capacity ratio, v/c	0.53	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst Dalene Whitlock Agency or Company W-Trans Date Performed $4 / 10 / 2017$ Analysis Time Period Existing plus Project	Highway / Direction of Travel From/To Jurisdiction Analysis Year	Westside Road Mill Creek to Felt (SB) Sonoma County 2014
Project Description: Rudd Wines Winery		
Input Data		
		highway Class II
Average Travel Speed		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	2.2	2.2
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.1	1.1
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.951	0.951
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	0.80	0.79
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	339	334
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $3.1 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $45.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $5.3 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $1.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS-f $\left.\mathrm{LS}^{-\mathrm{f}_{\mathrm{A}}}\right)$ $38.2 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $29.8 \mathrm{mi} / \mathrm{h}$ $\left.v_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 78.1% Percent free flow speed, PFFS	
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.7	1.7
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.973	0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	0.83	0.83
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	319	311
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	34.2	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	55.1	
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, \text { PTSF }}\right) \end{aligned}$	62.1	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	C	
Volume to capacity ratio, v/c	0.53	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst Dalene Whitlock Agency or Company W-Trans Date Performed $4 / 10 / 2017$ Analysis Time Period Weekday Plus Project \& Event	Highway / Direction of Travel From/To Jurisdiction Analysis Year	Westside Road Felta to Mill Creek (NB) Sonoma County 2014
Project Description: Rudd Wines Winery		
Input Data		
		highway Class II
Average Travel Speed		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	2.1	2.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.1	1.1
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.955	0.955
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	0.82	0.81
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	365	359
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $3.0 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}$, BFFS $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $5.3 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $1.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS- $\left.\mathrm{f}^{-\mathrm{Lf}_{\mathrm{A}}}\right)$ $48.2 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $39.6 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 82.2% Percent free flow speed, PFFS	
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.7	1.7
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.973	0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	0.84	0.84
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	349	340
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	38.5	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	52.0	
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, \text { PTSF }}\right) \end{aligned}$	64.8	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	C	
Volume to capacity ratio, v/c	0.53	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst Dalene Whitlock Agency or Company W-Trans Date Performed $4 / 10 / 2017$ Analysis Time Period Future	Highway / Direction of Travel From/To Jurisdiction Analysis Year	Westside Road Mill Creek to Felta (SB) Sonoma County 2040
Project Description: Rudd Wines Winery		
Input Data		
		highway Class II
Average Travel Speed		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	2.1	2.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.1	1.1
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.955	0.955
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	0.81	0.82
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	359	365
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $2.9 \mathrm{mi} / \mathrm{h}$		
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.7	1.7
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.973	0.973
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	0.84	0.84
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	340	349
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	37.4	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	52.0	
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, \text { PTSF }}\right) \end{aligned}$	63.1	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	C	
Volume to capacity ratio, v/c	0.53	

Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{ATS}}$ (Equation 15-12) veh/h	1675
Capacity, $\mathrm{C}_{\mathrm{d}, \text { PTSF }}$ (Equation 15-13) veh/h	1700
Percent Free-Flow Speed PFFS d $^{\text {(Equation 15-11-Class III only) }}$	77.6
Bicycle Level of Service	
Directional demand flow rate in outside lane, $v_{\text {OL }}$ (Eq. 15-24) veh/h	277.8
Effective width, Wv (Eq. 15-29) ft	10.00
Effective speed factor, S_{t} (Eq. 15-30)	4.79
Bicycle level of service score, BLOS (Eq. 15-31)	5.11
Bicycle level of service (Exhibit 15-4)	E
Notes	
1. Note that the adjustment factor for level terrain is 1.00 , as level terrain is one of the base conditions. For the purpose of grade adjustment, specific downgrade segments are treated as level terrain. 2. If $v_{i}\left(v_{d}\right.$ or $\left.v_{o}\right)>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis--the LOS is F. 3. For the analysis direction only and for $v>200 \mathrm{veh} / \mathrm{h}$. 4. For the analysis direction only 5. Exhibit 15-20 provides coefficients a and b for Equation 15-10. 6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst Dalene Whitlock Agency or Company W-Trans Date Performed $4 / 10 / 2017$ Analysis Time Period Future + Project + Event	Highway / Direction of Travel From/To Jurisdiction Analysis Year	Westside Road Felta to Mill Creek (NB) Sonoma County 2040
Project Description: Rudd Wines Winery		
Input Data		
		highway Class II
Average Travel Speed		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	2.1	2.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.1	1.1
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.955	0.955
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	0.85	0.86
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	405	413
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $2.6 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}$, BFFS $55.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $5.3 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}($ Exhibit $15-8)$ $1.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS (FSS=BFFS- $\left.\mathrm{f}^{-\mathrm{Lf}_{\mathrm{A}}}\right)$ $48.2 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS ${ }_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $39.2 \mathrm{mi} / \mathrm{h}$ $\left.\mathrm{v}_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 81.3% Percent free flow speed, PFFS	
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.6	1.6
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.977	0.977
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	0.86	0.87
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	392	399
Base percent time-spent-following ${ }^{4}$, BPTSF $_{d}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	42.0	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	46.7	
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, \text { PTSF }}\right) \end{aligned}$	65.1	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	C	
Volume to capacity ratio, v/c	0.53	

DIRECTIONAL TWO-LANE HIGHWAY SEGMENT WORKSHEET		
General Information	Site Information	
Analyst Dalene Whitlock Agency or Company W-Trans Date Performed $4 / 10 / 2017$ Analysis Time Period Future plus Project	Highway / Direction of Travel From/To Jurisdiction Analysis Year	Westside Road Mill Creek to Felta (SB) Sonoma County 2040
Project Description: Rudd Wines Winery		
Input Data		
		highway Class II
Average Travel Speed		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-11 or 15-12)	2.1	2.1
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-11 or 15-13)	1.1	1.1
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}=1 /\left(1+\mathrm{P}_{T}\left(\mathrm{E}_{T}-1\right)+\mathrm{P}_{R}\left(\mathrm{E}_{R}-1\right)\right)$	0.955	0.955
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \text { ATS }}$ (Exhibit 15-9)	0.86	0.85
Demand flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=V_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{g}, \mathrm{ATS}}{ }^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$	413	405
Free-Flow Speed from Field Measurement	Estimated Free-Flow Speed	
Mean speed of sample ${ }^{3}$, $\mathrm{S}_{F M}$ Total demand flow rate, both directions, v Free-flow speed, $\mathrm{FFS}=\mathrm{S}_{\mathrm{FM}}+0.00776\left(\mathrm{~V} / \mathrm{f}_{\mathrm{HV}, \mathrm{ATS}}\right)$ Adj. for no-passing zones, $\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ (Exhibit 15-15) $2.7 \mathrm{mi} / \mathrm{h}$	Base free-flow speed ${ }^{4}, \mathrm{BFFS}$ $45.0 \mathrm{mi} / \mathrm{h}$ Adj. for lane and shoulder width, ${ }^{4} \mathrm{f}_{\mathrm{LS}}($ Exhibit 15-7) $5.3 \mathrm{mi} / \mathrm{h}$ Adj. for access points ${ }^{4}, \mathrm{f}_{\mathrm{A}}$ (Exhibit $\left.15-8\right)$ $1.5 \mathrm{mi} / \mathrm{h}$ Free-flow speed, FFS $\left(\mathrm{FSS}=\mathrm{BFFS}-\mathrm{f}_{\mathrm{LS}} \mathrm{f}_{\mathrm{A}}\right)$ $38.2 \mathrm{mi} / \mathrm{h}$ Average travel speed, ATS $\mathrm{d}_{\mathrm{d}}=\mathrm{FFS}-0.00776\left(\mathrm{v}_{\mathrm{d}, \mathrm{ATS}}{ }^{+}\right.$ $29.2 \mathrm{mi} / \mathrm{h}$ $\left.v_{\mathrm{o}, \mathrm{ATS}}\right)-\mathrm{f}_{\mathrm{np}, \mathrm{ATS}}$ 76.4% Percent free flow speed, PFFS	
Percent Time-Spent-Following		
	Analysis Direction (d)	Opposing Direction (o)
Passenger-car equivalents for trucks, E_{T} (Exhibit 15-18 or 15-19)	1.6	1.6
Passenger-car equivalents for $\mathrm{RVs}, \mathrm{E}_{\mathrm{R}}$ (Exhibit 15-18 or 15-19)	1.0	1.0
Heavy-vehicle adjustment factor, $\mathrm{f}_{\mathrm{HV}}=1 /\left(1+\mathrm{P}_{\mathrm{T}}\left(\mathrm{E}_{\mathrm{T}}-1\right)+\mathrm{P}_{\mathrm{R}}\left(\mathrm{E}_{\mathrm{R}}-1\right)\right)$	0.977	0.977
Grade adjustment factor ${ }^{1}$, $\mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}$ (Exhibit 15-16 or Ex 15-17)	0.87	0.86
Directional flow rate ${ }^{2}, v_{i}(\mathrm{pc} / \mathrm{h}) v_{\mathrm{i}}=\mathrm{V}_{\mathrm{i}} /\left(\mathrm{PHF}^{*} \mathrm{f}_{\mathrm{HV}, \mathrm{PTSF}}{ }^{*} \mathrm{f}_{\mathrm{g}, \mathrm{PTSF}}\right)$	399	392
Base percent time-spent-following ${ }^{4}$, BPTSF $_{\text {d }}(\%)=100\left(1-e^{\text {av }}{ }_{\text {d }}{ }^{\text {b }}\right.$)	42.9	
Adj. for no-passing zone, $\mathrm{f}_{\mathrm{np}, \text { PTSF }}$ (Exhibit 15-21)	46.7	
$\begin{aligned} & \text { Percent time-spent-following, } \text { PTSF }_{d}(\%)=\text { BPTSF }_{d}+f_{n p, P T S F}{ }^{*}\left(v_{d, \text { PTSF }} / v_{d, \text { PTSF }}+\right. \\ & \left.v_{o, P T S F}\right) \end{aligned}$	66.5	
Level of Service and Other Performance Measures		
Level of service, LOS (Exhibit 15-3)	C	
Volume to capacity ratio, v/c	0.53	

Capacity, $\mathrm{C}_{\mathrm{d}, \mathrm{ATS}}$ (Equation 15-12) veh/h	1675
Capacity, $\mathrm{C}_{\mathrm{d}, \text { PTSF }}$ (Equation 15-13) veh/h	1700
Percent Free-Flow Speed PFFS d $^{\text {(Equation 15-11-Class III only) }}$	76.4
Bicycle Level of Service	
Directional demand flow rate in outside lane, $v_{\text {OL }}$ (Eq. 15-24) veh/h	338.9
Effective width, Wv (Eq. 15-29) ft	10.00
Effective speed factor, S_{t} (Eq. 15-30)	4.79
Bicycle level of service score, BLOS (Eq. 15-31)	5.21
Bicycle level of service (Exhibit 15-4)	E
Notes	
1. Note that the adjustment factor for level terrain is 1.00 , as level terrain is one of the base conditions. For the purpose of grade adjustment, specific downgrade segments are treated as level terrain. 2. If $v_{i}\left(v_{d}\right.$ or $\left.v_{o}\right)>=1,700 \mathrm{pc} / \mathrm{h}$, terminate analysis--the LOS is F. 3. For the analysis direction only and for $v>200 \mathrm{veh} / \mathrm{h}$. 4. For the analysis direction only 5. Exhibit 15-20 provides coefficients a and b for Equation 15-10. 6. Use alternative Exhibit 15-14 if some trucks operate at crawl speeds on a specific downgrade.	

